This theorem can also be immediately applied to Bessel's functions whose order is not zero. Let $F_{n}(x)$ be any real solution of Bessel's equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}+\left(1-\frac{n^{2}}{x^{2}}\right) y=0 \tag{4}
\end{equation*}
$$

Using polar coördinates r, ϑ we have as a solution of (3) when n is real

$$
u=\cos n \vartheta \cdot F_{n}(r)
$$

when n is pure imaginary

$$
u=e^{i n \vartheta} \cdot F_{n}(r) .
$$

Applying the theorem just quoted to these solutions we get the theorems:

If $n^{2} \leqq 1, F_{n}(x)$ vanishes at least once in any interval of length $2 c=4 . \overline{810} \cdots$ which does not include the origin.

If $n>1, F_{n}(x)$ vanishes at least once in any interval of length $2 c$
throughout which $|x|>c\left[\csc \frac{\pi}{2 n}-1\right]$.
As a special application I note that we thus get an upper limit for the value of the smallest root of $F_{n}(x)$ and thus in particular of $J_{n}(x)$.

Harvard University,
Cambridge, Mass.

A GENERALIZATION OF APPELL'S FACTORIAL FUNCTIONS.

by dr. e. J. wilczynski.
(Read before the American Mathematical Society at the Annual Meeting, December 28,1898 .)

$$
\text { LET } \quad F(s, z)=0
$$

be an algebraic equation defining s as function of z. Let R, the corresponding Riemann's surface, be of class p. By a system of crosscuts $a_{1}, \cdots, a_{p} ; b_{1}, \cdots, b_{p} ; c_{1}, \cdots, c_{p}$ the ($2 p+1$)ply connected surface R is changed into a simply connected surface $R_{a b c}$.

We can solve the following problem : Construct a function $\varphi(z)$ of a point on this surface, a given branch of which is multiplied by a given uniform function of z and s whenever the point crosses one of the crosscuts. It is not in general possible to construct such a function $\varphi(z)$ which is uniform on $R_{a b c}$. Except in special cases there will arise new branch points for $\varphi(z)$ upon this surface, but it is possible to describe the behavior of the function at those points, as well as to give the conditions for their non-occurrence.*

Call generally λ a point on the left, and ρ a point on the right side of any crosscut. Then $\frac{\varphi(\lambda)}{\varphi(\rho)}$ is to be a uniform function of s and z for every crosscut. A slight modification of Appell's proof, which applies to the case of constant factors, shows that these multipliers must equal unity for the crosscuts c_{k}, which we therefore can suppose to be removed. Also the factor belonging to b_{k} is the same function for both parts of the crosscut.

We proceed then to construct a function $\varphi(z)$ which has the properties that
along a_{k}

$$
\varphi(\lambda)=m_{k} \varphi(\rho)
$$

along b_{k}

$$
\varphi(\lambda)=n_{k} \varphi(\rho)
$$

$$
(k=1,2, \cdots, p)
$$

where m_{k} and n_{k} are arbitrarily given uniform functions of s and z.

Let $w_{1}(z), w_{2}(z), \cdots, w_{p}(z)$ be the p normal integrals of the first kind. Their moduli of periodicity are exhibited in the well known table

Crosscut.	a_{1}	a_{2}	\ldots	a_{p}	b_{1}	b_{2}	\cdots	b_{p}
w_{1}	πi	0	\cdots	0	b_{11}	b_{12}	\ldots	$b_{1 p}$
w_{2}	0	πi	\ldots	0	b_{21}	b_{22}	\ldots	$b_{2 p}$
\ldots	$\dddot{0}$	\cdots	...	$\stackrel{\dddot{\pi}}{ } \boldsymbol{i}$	$\dddot{b r p}^{\ldots}$	$\dddot{b_{p 2}}$	\cdots	$\dddot{b}_{p p}$

where $\quad b_{i k}=b_{k i}$.
It is clear then that

$$
\begin{equation*}
\eta=e^{\frac{1}{\pi i}\left[w_{1}(z) \log m_{1}+w_{2}(z) \log m_{2}+\ldots+w_{p}(z) \log m_{p}\right]} \tag{1}
\end{equation*}
$$

has the required factors for the crosscuts a_{k}, so that

[^0]\[

$$
\begin{equation*}
\xi=\frac{\varphi}{\eta} \tag{2}
\end{equation*}
$$

\]

has the factors unity for a_{k}. For crosscut b_{k} we have

$$
\begin{array}{ll}
\varphi(\lambda)=n_{k} \varphi(\rho) \\
\eta(\lambda)=\eta(\rho) e^{\left.\frac{1}{\pi_{i}}{ }^{[b 1 k} \log m_{1}+b_{2 k} \log m_{2}+\cdots+b_{p k} \log m_{p]}\right]} \\
\xi(\lambda)=\xi(\rho) \quad \text { along crosscut } a_{k}, \\
\xi(\lambda)=\mu_{k} \xi(\rho) \quad \text { along crosscut } b_{k},
\end{array}
$$

Hence
where

$$
\begin{aligned}
& \log \mu_{k}=\log n_{k}-\frac{1}{\pi i}\left[b_{1 k} \log m_{1}\right. \\
& \left.+b_{2 k} \log m_{2}+\cdots+b_{p k} \log m_{p}\right]
\end{aligned}
$$

Now we can determine p quantities $v_{1}, v_{2}, \cdots, v_{p}$ in such a way that the following function, which we can then call $\xi(z)$, has these properties, viz. :

$$
\begin{equation*}
\xi(z)=e^{v_{1} \pi a_{1} \beta_{1}(z)+v_{2} \pi \alpha_{2} \beta_{2}(z)+\cdots+v_{p} \pi \alpha_{p} \beta_{p}(z)}, \tag{4}
\end{equation*}
$$

$\pi_{a_{i} \beta_{i}}(z)$ denoting a normal integral of the third kind, which becomes infinite for α_{i} and β_{i} as the expression

$$
\log \left(z-\beta_{i}\right)-\log \left(z-\alpha_{i}\right)
$$

For, along $\alpha_{k}, \pi_{a_{i} \beta_{i}}(\lambda)=\pi_{a_{i} \beta_{i}}(\rho)$, so that $\xi(\lambda)=\xi(\rho)$; and, along b_{k},

$$
\pi_{\alpha_{i} \beta_{i}}(\lambda)=\pi_{\alpha_{i} \beta_{i}}(\rho)+2\left[w_{k}\left(\beta_{i}\right)-w_{k}\left(\alpha_{i}\right)\right] .
$$

So $\xi(z)$ will have the required factors along b_{k} if
(5) $\log \mu_{k}=2 \sum_{i=1}^{p} v_{i}\left[w_{k}\left(\beta_{i}\right)-w_{k}\left(\alpha_{i}\right)\right] \quad(k=1,2, \cdots, p)$.

As α_{i} and β_{i} are perfectly arbitrary, we may choose them so that the determinant

$$
\Delta=\left|w_{k}\left(\beta_{i}\right)-w_{k}\left(\alpha_{i}\right)\right| \quad(i, k=1,2, \cdots, p)
$$

does not vanish. We can then determine v_{1}, \cdots, v_{p} so as to verify (5); v_{i} will be a homogeneous linear function of $\log \mu_{1}, \cdots, \log \mu_{p}$, with constant coefficients, say

$$
\begin{equation*}
v_{i}=\sum_{k=1}^{p} \alpha_{i k} \log \mu_{k} \quad(i=1,2, \cdots, p) ; \tag{6}
\end{equation*}
$$

v_{i} being thus determined,

$$
\begin{equation*}
\varphi(z)=e^{\frac{1}{\pi i} \sum_{k=1}^{p} w_{k}(z) \log m_{k}+\sum_{k=1}^{p} v_{k} \pi_{a_{k} \beta_{k}(z)}^{(z)}} \tag{7}
\end{equation*}
$$

is a function with the required properties.
The most general function with these properties is

$$
\varphi(z) f(z)
$$

where $f(z)$ is a function whose factors at the crosscuts are all equal to unity.

Let us proceed to examine the behavior of $\varphi(z)$ for all of the points of the Riemann's surface. This function aside from the crosscut factors is obviously uniform in the vicinity of all points except α_{k}, β_{k}, and the zeros and poles of m_{k} and n_{k}.

In the vicinity of α_{k} we have

$$
\pi_{a_{k} \beta_{k}}(z)=-\log \left(z-\alpha_{k}\right)+P\left(z-\alpha_{k}\right)
$$

where $P\left(z-\alpha_{k}\right)$ represents an ordinary power series, and the other integrals, as well as $\log m_{k}$ and $\log n_{k}$, are all uniform in the vicinity of α_{k} if we assume that the poles of m_{k} and n_{k} are different from α_{k} and β_{k}. Then if z describes a positive circuit around $\alpha_{k}, \varphi(z)$ changes into

$$
A_{k} \varphi(z)
$$

where

$$
\begin{gather*}
A_{k}=e^{-2 \pi i v k}=\prod_{j=1}^{p} \mu_{j}^{-2 \pi i a_{k j}}=\prod_{j=1}^{p}\left(\frac{m_{1}^{b_{1 j}} m_{2}^{b_{2 j} \cdots} m_{p}^{{ }_{p}{ }_{p j}}}{n_{j}^{\pi i}}\right)^{2 a_{k j}} \tag{8}\\
(k=1,2, \cdots, p) .
\end{gather*}
$$

A circuit around β_{k} multiplies $\varphi(z)$ by $\frac{1}{A_{k}}$, so that a circuit around α_{k} and β_{k} leaves $\varphi(z)$ unaltered, provided it is so taken as not to enclose any of the other critical points.

We have just seen that in the vicinity of α_{k} and β_{k},

$$
\begin{aligned}
& \varphi(z)=e^{-v_{k} \log \left(z-\alpha_{k}\right)} P_{k}\left(z-a_{k}\right), \\
& \varphi(z)=e^{+v_{k} \log \left(z-\beta_{k^{\prime}}\right.} Q_{k}\left(z-\beta_{k}\right),
\end{aligned}
$$

respectively. We have assumed that the poles and zeros of
m_{k} and n_{k} do not coincide with any of the points α_{k} and β_{k}. Hence for $z=\alpha_{k}, v_{k}=v_{k}^{\prime}$ a finite quantity, and also the value $v_{k}=v_{k}{ }^{\prime \prime}$ for $z=\beta_{k}$. We can therefore multiply $\varphi(z)$ by finite powers of $z-a_{k}$ and $z-\beta_{k}$ respectively, so that the product does not become infinite for these values of z. We will then say that $\varphi(z)$ is regular in the vicinity of these points.

In addition to these singular points α_{k} and β_{k}, which we can call points of the first kind, we must consider the points of the second kind, viz. : the zeros and poles of m_{k} and n_{k}. They give rise to a double kind of multiformity in $\varphi(z)$.

A circuit around a zero ε_{i} of m_{k} multiplies $\varphi(z)$ by an expression of the form

$$
\begin{equation*}
B_{k i}=e^{2 w_{k}(z)+e_{1} \pi_{\alpha 1} \beta_{1}(z)+e_{2} \pi_{\alpha 2 \beta_{2}}(z)+\cdots+e_{\rho} \pi_{\alpha p \beta p}(z)} \tag{9}
\end{equation*}
$$

where $e_{1}, e_{2}, \cdots, e_{p}$ are constants. It is seen at once that these factors $\boldsymbol{B}_{k i}$ have the same value for all simple zeros of m_{k}, say B_{k}, and that for a zero of multiplicity λ the factor is $B_{k}{ }^{\lambda}$. For simple poles the factor is $\frac{1}{B_{k}}$.

Similarly a circuit around a simple zero of n_{k} multiplies $\varphi(z)$ by a function C_{k} which is just like B_{k} except that it contains no integral of the first kind.

But the zeros and poles of m_{k} and n_{k} give rise to multiformity in still another way. For the expression A_{k} by which $\varphi(z)$ is multiplied on making a circuit around α_{k} is itself multiplied by constants for circuits around the zeros and poles of m_{k} and n_{k}. Thus a circuit around a simple zero of m_{k} multiplies A_{k} by a constant D_{k}, and a circuit around a simple zero of n_{k} by a constant E_{k}. Obviously if m_{k} and n_{k} are rational functions of s and z a circuit enclosing all of the poles and zeros of one of these functions and no other critical points leaves A_{k} unaltered.

The points α_{k} and β_{k} also give rise to a secondary multiformity other than that already mentioned. For a circuit around α_{i} multiplies B_{k} and C_{k} by constant factors $b_{k i}, c_{k i}$ for $i=1,2, \ldots, p$.

Finally B_{k} and C_{k} are themselves factorial functions, with constant crosscut factors equal to unity for the crosscuts a_{v}, and to $F_{k l}, G_{k l}$ for B_{k} and C_{k} respectively at the crosscuts b_{l}. Only in case $F_{k l}=G_{k l}=1$, will all branches of $\varphi(z)$ have the factors m_{l} and n_{l} at the crosscuts.

If $\varphi(z)$ denote any particular branch of our multiform function, every other branch is therefore found from it by
multiplying by all possible combinations of the different factors mentioned.

There are altogether

$$
7 p+4 p^{2}
$$

factors of which $2 p+4 p^{2}$ are constants.
If m_{k} and n_{k} are rational functions of s and z whose poles and zeros are distinct from the points α_{k} and $\beta_{k}, \varphi(z)$ is everywhere regular. Every other function of the same kind is contained in the form

$$
\varphi(z) R(s, z),
$$

$R(s, z)$ being a rational function of s and z.
In general it is impossible to avoid the introduction of α_{k} and β_{k} as secondary branch points, however they may be chosen. But if there are relations between m_{k} and n_{k} so that μ_{k} is a constant, all of the quantities v_{k} may be taken equal to unity provided that β_{i} and α_{i} are chosen in accordance with the relation (5) putting $v_{i}=1$, or more generally

$$
\begin{gathered}
\log \mu_{k}=2 \sum_{i=1}^{q}\left[w_{k}\left(\beta_{i}\right)-w_{k}\left(\alpha_{i}\right)\right], \quad(q \geqq p) \\
(k=1,2, \ldots, p)
\end{gathered}
$$

which can in general be done. A special case hereof is that of constant crosscut factors. The zeros and poles of m_{k} and n_{k} will still be branch points. β_{k} and α_{k} will be zeros and poles of $\varphi(z)$.

If $\varphi(z)$ is to be uniform on the surface $R_{a b}, m_{k}$ and n_{k} must have the form

$$
m_{k}=e^{\rho_{k}(s, z)} \quad n_{k}=e^{\sigma_{k}(s, z)}
$$

where ρ_{k} and σ_{k} are uniform functions of s and z. This still leaves $\varphi(z)$ multiform in the vicinity of α_{k} and β_{k}. In order that φ (z) may be uniform there also, all of the quantities v_{k} must be integers. But then according to (6) μ_{k} must be constants, so that we are led back to the case just treated.

If ρ_{k} and σ_{k} are rational functions of s and z they can be represented as sums of integrals of the second kind and their derivatives. Suppose the simplest case, that all of the poles of ρ_{k} and σ_{k} are distinct ; then ρ_{k} and σ_{k} are linear functions of integrals of the second kind only. Our function $\varphi(z)$ then reduces to an exponential into which enter products of
integrals of the three kinds. It can then be essentially considered as a product of divers θ functions.

All of these functions can appear as integrals of differential equations, a fact which we hope to discuss on some future occasion.

University of California, Berkeley, November 7, 1898.

ON THE ARITHMETIZATION OF MATHEMATICS.

by professor James pierpont.

(Read before the American Mathematical Society at the Meeting of February 25, 1899.)

Introduction.*-The following lines are an attempt to show why arithmetical methods form the only sure foundation in analysis at present known. Certain general reasons are indicated in a very suggestive paper by Klein. \dagger I have striven to carry these ideas further and indicate exactly why arguments based on intuition cannot be considered final in analysis. To do this I have grouped certain well known facts so as to support the conclusion which is formulated at the end of this paper. Doubtless a similar train of thought has occurred to others who have dwelt on this fascinating subject, lying on the border line between mathematics and metaphysics; but I have seen nothing of the kind in print. The argument falls under two heads. The first deals with magnitudes or quantities (Grössen). It is very easy to point out the gross lack of rigor in this respect and to show how its correction leads inevitably to the modern theory of irrational numbers as developed by Weierstrass, Dedekind, or G. Cantor. The matter is so obvious that I have devoted, only a few lines to it. The second heading treats of our intuition. This requires more detail, and I have not hesitated to make the argument appeal to all by citing numerous examples.

[^1]
[^0]: * A similar generalization of the functions defined by linear differential equations appears in the April number of the Amer. Jour. of Math.

[^1]: * These prefatory remarks have been added to the paper since its presentation.
 \dagger " Ueber Arithmetisirung der Mathematik." Göttinger Nachrichten (Geschäftliche Mittheilungen) 1895, p. 82. See also Miss Maddison's. translation in the Bulletin, 2 d series, vol. 2, p. 241.

