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NON-OSCILLATOEY LINEAE DIFFERENTIAL 
EQUATIONS OF THE SECOND OEDEE. 

BY PROFESSOR MAXIME BÔCHER. 

( Read before the American Mathematical Society February 23, 1901. ) 

W E shall be concerned with the differential equation 

œ S+PÈ + »-». 
and for the sake of simplicity we will assume that the co­
efficients p and q are, throughout the finite interval a = x = b, 
continuous real functions of the real variable x. We shall 
find it convenient to lay down the following definition : 

The equation (1) is said to be oscillatory or non-oscillatory in 
the interval a~x~b according as it does or does not have at 
least one solution (not identically zero) which vanishes more than 
once in this interval. 

I t is my object in the present paper to deduce certain con­
ditions (chiefly sufficient conditions) that the equation (1) 
should be non-oscillatory. Such conditions have been ob­
tained by Picard (Traité d'analyse, volume I I I , pp. 101-
104); but the method which I use is not only entirely dif­
ferent and, as it seems to me, less artilicial than that of 
Picard, but yields, besides all of Picard's results, others which 
Picard's method does not give. 

My starting point is the special case p = 0 : 

(2) g + »-0. 

Equation (2) is non-oscillatory in the interval a = x~b if 
throughout this interval q ~ 0. 

For if (2) has a solution y which vanishes more than once 
in the interval in question, let x1 and x2 be two successive 
roots of y. We may, without loss of generality, assume 
y > 0 when x1 < x < #2, as, if this were not the case, we 
could replace y by y1 = — y. We have then y\%1)>0, 
2/'(^2) < 0 ; but by the law of the mean 

y'OO - y'O&i) = (*, - *i) y\e) (*i < * < * . ) • 
Accordingly y" (£) < 0. This, however, is impossible, since 
by equation (2) y " ( 0 = - tf(0-y(0-
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By reducing (1) to the binomial form (2), we shall get a 
theorem concerning (1) similar to the one just proved for 
(2). This reduction is most commonly performed by means 
of a change of dependent variable y.* I t can, however, 
equally well be performed by changing the independent va­
riable x, or, more generally, by changing both independent 
and dependent variable. We will consider at once this gen­
eral transformation 

(3) t=f(x), y=<p(x)y. 

We assume here that ƒ and <p have continuous first and 
second derivatives throughout the interval a ^ x ^ b. Fur­
thermore, since we do not wish the solutions of the trans­
formed equation to become infinite, we assume that <p does 
not vanish, say for distinctness 

<p(x)>0 (a^x^b). 

Finally, since we wish the interval a ^ x ^ b to correspond 
in a one to one manner to an interval on the £-axis, we as-
sume that ƒ ' does not vanish in the interval a^x^b. 

A peculiarity of this transformation which makes it avail­
able for our purposes may be stated as follows : 

The oscillatory or non-oscillatory character of equation (1) is in­
variant with regard to transformations (3). 

The transformation (3) carries (1) over into 

(^ d*y + 1 V" + 2 *' + A dy + *" + v-p' + q<p- _ 0 
(4) de + J' LJ' + 7 p J dt + ^(Ty y ~ °' 
accents denoting differentiation with regard to x. 

Choosing <p at pleasure, subject to the restrictions above 
mentioned, let us determine ƒ so that the second term of (4) 
drops out, 

X<p-2e~J°Pdx dx + k' (A? 4= 0), 

where c is any point of the interval a ^ x ^ b. 
I t is important to notice that all the conditions which j 

was to fulfill are satisfied by this function. 
Equation (4) now reduces to 

*See, e. g., Forsyth's Treatise on differential equations, p. 88. I note in 
passing that this reduction is possible only if the coefficient p has a con­
tinuous first derivative, a restriction which need not be imposed if we re­
duce to the binomial form by a change of independent variable. 
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(6) | f + £ e ' J > V ' + pV> + q<pTy = 0. 

When we apply to this equation the theorem proved 
concerning equation (2), we see that equation (6), and ac­
cordingly also equation (1), will be non-oscillatory provided 
<p" + j><p' + q<p^0. That is 

If a function <p exists which, together with its first and second 
derivatives, is continuous throughout the interval a = x~b, and 
which satisfies the two conditions 

(7) ? > 0 (a^x^b), 

(8) v"+p<p' + qv^0 (a^x^b), 

then (1) is non-oscillatory in this interval.* 
By assuming for <p special functions we can obtain useful 

and easily applied criteria for proving that special equa­
tions of the form (1) are non-oscillatory. We add a few 
such criteria, noting to the left the function <p used, and to 
the right the special conditions, if any, which must be sat­
isfied if the formula is to be applied. In these formulae 
m and a denote constants to which we may assign any real 
values we please. 
(a) ? = 1, q^O. 

(6) (p = emx, q ~. — mp — m2. 
^mxp — m(m -f 1) 

(c) <p=x-™, ^ _ ^ _ ^ _ J L _ 2 (0<a). 

(d) <f = m—x, q^—£—^ (6<m). 

I \dx 
* By l e t t ing </> — e Jc we obtain the following theorem : 
If a function 2, exists which, together with its first derivative, is continuous 

throughout the interval a^x^b, and which satisfies the condition 
(8 ' ) g^V — V'+lp (a^x^b), 
then ( 1 ) is non-oscillating in this interval. 

Conversely, the theorem of the text follows from this one ; so that the 
two theorems are precisely equivalent to each other. 

Picard (1. c , p. 102) deduces by another method a theorem identical 
with the one just stated, except that the inequality (8') is replaced by 

q ^ ' — (A— PP)2-
This inequality is always satisfied when (8 /) is satisfied, but the con­

verse is not true. I t is only when p = 0 that Picard's result is as gen­
eral as ours. 
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(e) <p = m2 — x2, q^ -^--—°^J-(— | m | < a < 6 < |m|) . 
m — x ' 

( ƒ ) <p = sin m(x — a), q ~ m2 — mp ctnm(#— a) 

( a < a < 6 < a + - | ( m > 0 ) . 
\ m/ 

(pr)* ^ ==e J q ~m(l — m)j92 + mp' (provided p 

has a continuous derivative). 
Formulae of this sort might of course be multiplied in­

definitely. To show how they are to be applied let us con­
sider the simplest case of BesseFs equation 

(9) ^ + 1 > + 2/ = 0 . 
x 

Since p is here discontinuous at the point x = 0, we can 
consider only intervals which do not include, or even reach 
up to this point. Since the equation is unchanged by re­
placing x by — x, it will be sufficient to consider intervals in 
which x is positive. 

Formulae (a), (c), (g) yield us no information whatever 
with regard to this equation. Formula (6) is most service­
able here if we let m = — 1. I t then shows us that (9) is 
non-oscillatory in the interval a ~ x = J, where a is any 
small positive quantity. If we let m — 2 in formulae (c£) 
and (e), they each show us that (9) is non-oscillatory in the 
interval a = x = b, when 0 < a < b < 2. This is the best 
result these two formulae can be made to yield if we wish 
to consider an interval starting from a point arbitrarily 
near the point x = 0. Of the seven formulae written above, 
( ƒ) gives the best result when applied to intervals of the 

sort just described, since when we let m = -| \ / 2 , a = — —-, 
JllYh 

it shows us that (9) is non-oscillatory in the interval a =x 
= b when 

0 < a < b < 7r-~r- = 2.22. 

This result, as we shall see in a moment, is nearly as good 
as any method could give us. 

*The special case w = 1 of this formula is noteworthy for the particu­
larly simple result (q~p') which it yields ; while the special case m = J 
gives us the result we should have obtained by reducing (1) to the bino­
mial form by a change of dependent variable only. 
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If on the other hand we wished to consider, for this same 
equation (9), intervals lying at a great distance from the 
origin, none of the formulae above yield good results, the 
best being again ( ƒ ), which when m = 1 shows us that (9) 
is non-oscillatory in any interval of length 7r/2. A much 
better result may be obtained by letting 

<p = —- sin m(x — a) ( a<a<C&<C°H 1. 
v x \ m r 

This function leads us to the inequality 

1 < 2 3m - 2 

which just fails to be satisfied for large values of x when 
m = 1. We thus see that if I is any positive constant less 
than 7T, a positive constant M exists such that, in every inter­
val of length I throughout which x > M', the equation (9) is 
non-oscillatory. That the function we have just used 
should give us an interval which is nearly twice as long as 
that given by formula ( ƒ ) is the more remarkable because 
when x is large these two functions <p are, throughout an 
interval of length TT, very nearly proportional to each 
other. If they were exactly proportional they would ob­
viously lead to the same result. 

We now leave these illustrative applications to equation 
(9). 

Although we originally deduced condition (8) and its 
special cases as an extension, to the general equation (1), of 
the condition q ~ 0 which we had established for the bino­
mial equation (2), it turns out that some of these conditions 
give results for equation (2) which go beyond the result 
from which we started. Thus if we apply ( ƒ) to the special 
case p = 0 we get the important theorem 

If throughout an interval of length less than I 

the equation (2) is non-oscillatory in this interval.* 

Up to this point we have obtained merely sufficient con­
ditions that a differential equation should be non-oscillatory. 

* Cf. the proof here given of this familiar theorem of Sturm with that 
given hy Picard (1. c. ). 
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A condition which turns out to be also necessary is obtained 
by taking as the function <p a solution of (1 ): 

A necessary and sufficient condition that (1) should be non-oscil­
latory in the interval a = x~b is that it should have a solution 
which does not vanish in this interval. 

That this is a sufficient condition* is seen at once from 
the fact that either this solution or its negative satisfies con­
ditions (7) and (8). To prove that it is also a necessary 
condition, assume that the interval a = x = b is non-oscilla­
tory, and consider the two solutions yx and y2 of (1) which 
satisfy the conditions 

SfrOO = 0, y / ( a ) > 0 ; y,(6) = 0, &'(&)< 0. 

Since neither of these solutions can vanish again in the in­
terval, and since they are positive in the neighborhood of a 
and b respectively, they must be positive throughout the re­
mainder of the interval. Accordingly yl + y2 is a solution 
of (1) which is positive throughout the whole interval. 

From the theorem just proved follows immediately this 
result : 

A necessary and sufficiënt condition that the equation (1) is non-
oscillatory in the interval a = x = b is that the solution of (1) 
which vanishes at a (or, if we prefer, at b), but is not identically 
zero, does not vanish again in the interval. 

This theorem gives us what is theoretically a perfect test; 
we have merely actually to compute the solution of (1) 
which vanishes at a, in the form of a series say, and to see 
whether or not this solution vanishes again in the interval. 
The difficulties involved in the computation may of course 
be so great in any special case as to make this method prac­
tically useless. 

This last theorem if applied to (9) shows us that this 
equation is non-oscillatory in the interval a=x^b, where a 
is any small positive quantity and b is the smallest positive 
root of the Bessel function J0(x), viz. b = 2.40 ••• .f 

The condition (8) can also be stated in the following form 
which again gives us a necessary as well as a sufficient con­
dition : 

* This also follows at once from the well known theorem of Sturm : 
Between two successive roots of a solution of (1) lies one and only one root of 
any linearly independent solution; and conversely this theorem follows 
from the theorem of the text. 

f This is actually the largest value that can be given to b, since every 
other solution of (9) has a root smaller than this. The proof of this fact 
is complicated by the presence of a singular point of (9) at x = 0. See, 
however, BULLETIN, March, 1897, p . 211. 
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If T is a real function of x which, throughout the interval 
a~x = bj is continuous, and satisfies the condition r = 0, then a 
necessary and sufficient condition that (1) be non-oscillatory in 
this interval is that the non-homogeneous equation 

/ i ^ \ d*y , dy , 
C10) dl>+pl + w=r 

have a solution y satisfying the relation 

y>0 (a^Êx^b).* 

T h a t this is really a necessary condition is seen from the 
fact t h a t if (1) is non-oscillatory i t has a solution positive 
th roughou t the interval , and by adding a sufficiently large 
positive mul t ip le of th is solution of (1) to an arbi t rar i ly 
chosen solution of (10) we get the positive solution of (10) 
desired. 

Another very impor tan t form into which condition ( 8 ) 
can be t h rown is the following : 

The function qx being continuous in the interval a = x = b and 
satisfying the condition 

q^q (a^x^b), 

the equation (1) will be non-oscillatory in this interval if the equa-

(11) y" + py' +q,y = 0 

is non-oscillatory there. 
For if (11) is non-oscillatory it has a solution <p positive 

th roughou t t he in te rva l a~x~b. Subst i tu t ing <p in the 
first member of (1) gives us, when we t ake account of the 
fact t h a t <p satisfies (11) , 

?" + p?' + q<p= (q — &)? = () (a^x^b). 

T h u s <p satisfies condit ions (7) and (8 ) , and therefore (1) 
is non-oscillatory, f 

I n conclusion I will ment ion t h a t condition (7 ) may be 
replaced by the somewhat less restr ict ive condit ion 

(7 ' ) <p>0 (a < * < & ) , 

* This theorem may also be proved directly and the other theorems of 
this paper deduced from it. 

f This theorem may be proved directly by means of the methods used 
by Sturm {LiouvilWs Journal, vol. 1, p. 106) and is in fact a special case 
of one of Sturm's theorems. From it may be deduced the other theorems 
of this paper. 
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i. e., the case in which the function <p vanishes at one or 
both ends of the interval need not be excluded. The inter­
val on the £-axis would, however, then extend to infinity in 
one or both directions, and the fundamental theorem con­
cerning equation (2) from which we started would on 
longer be sufficient, but would have to be replaced by a 
theorem which states that, if q = 0, no solution of (2) which 
vanishes at a finite point can approach a finite limit as x 
becomes either positively or negatively infinite, and that no 
solution of (2) can approach finite limits both when x = 
+ oo and when x= — oo. 

The extension which our other theorems gain by the use 
of (7') in place of (7) is easily seen. In using functions <p 
which vanish at one of the ends of the interval it is useful 
to know that if <p' also vanishes then <p cannot possibly sat­
isfy (8),—a fact whose proof we also omit. 

GÖTTINGEN, GERMANY, 

February 4,1901. 

CONCEENIlSra S E A L AND COMPLEX CONTINU­
OUS GROUPS. 

BY PROFESSOR L. E. DICKSON. 

(Bead before the American Mathematical Society, February 23, 1901.) 

1. THIS paper aims to illustrate certain differences and 
certain analogies between related real and complex continu­
ous groups. Lie's theory has been developed chiefly for the 
latter groups, the modifications necessary for real groups 
being treated quite briefly. 

In §§ 2-4 are exhibited a real group in m variables and a 
real group in 2 m variables, each of m2 parameters, such that 
the corresponding complex groups are of like structure. 
In §§ 5-8, it is shown for m = 2 that the two real groups 
have different structures. Of the three proofs given, the 
first two are analytic and involve little technical knowledge 
of group theory, while the third group is geometric and 
gives a better insight into the nature of the question. 

In § 10, it is illustrated for the case m = 2 how the gen­
eral m-ary linear homogeneous complex continuous group 
gives rise to an isomorphic 2m-ary linear homogeneous real 
continuous group. Similarly, the complex projective groups 
lead to groups of birational quadratic transformations. 


