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ON THE ALGEBRAIC POTENTIAL CURVES.

BY DR. EDWARD KASNER.

(Read before the American Mathematical Society, February 23, 1901.)

TuE object of this paper is to derive the characteristic
geometric properties of a class of curves which are of in-

* The row for which m =0 is of course merely a verification, leading
to the known values
8, =16, s,=m490.
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terest in connection with the theory of equations and of the
potential function. Amnalytically, these curves are obtained
by equating to zero the rational integral solutions ¢(z, y)
of Laplace’s equation
pe=2%197—0,

or, what is equivalent, the real (or imaginary) parts of the
rational integral functions of x + ¢y. Various geometric
properties are given in Briot and Bouquet’s Théorie des
fonctions elliptiques (book IV, chapter II), but none are
completely characteristic.

§1. Apolarity with Respect to « Point Pair,

A curve
9 =q =0,

is said to be apolar * to a conic
Q=3Puu, =us =0,

when every polar conic of the curve is circumseribed about
an infinite number of triangles self-conjugate with respect
to the conic @ ; 7. e., when the bilinear covariant
o0
(1) S E'Pka a 2a/mn_2
vanishes identically.
Let the conic degenerate into a pair of points 4, B,

A=u,=0, B=us=0,
so that
@ = u,ug;
then
S = a,apa"*,

which is the apolar covariant of the forms
u, and wuge "1,

or of
ug and  w,a .

It is easy to show, however, that a point and a curve can
be apolar only when the curve consists of a set of straight
lines passing through the point, so that

* Reye, Crelle, vol. 79 (1874), p. 159. For a convenient summary of
the theory of apolar relations see Schlesinger, Math. Annalen, vol. 22
(1883), pp. 520-523.
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TerorEM 1. If a curve of the nth order is apolar to a point
patr (considered as a degenerate conic), the first polar (and there-
Jfore any of the polars) of either of the points with respect to the
curve consists of a set of lines passing through the other point; the
converse 18 also true.

Letting n = 2, it follows that a conic is apolar to a point
pair when the two points are conjugate with respect to the
conic. From the definition of apolarity we have then

TreorEM II. If a curve is apolar to a point pair, the latter
18 self-conjugate with respect to all the polar conics of the curve;
conversely, etc.

Since from Theorem I both the first polar and the polar
conic of either point have nodes, we have

TreoreM ITI. If a curve is apolar to a potnt pair, both the
Hession and the Steinerian of the curve pass through the point

pair; furthermore, these points correspond in the sense defined by
Clebsch

§2. Polar Properties of Potential Curves.

Instead of an arbitrary point pair, consider now the pair
of circular points at infinity I, J. The equation of this
point pair in rectangular line coordinates may be written

w4 =0;

so that, expressed in rectangular point coordinates, the co-
variant S of the preceding section becomes

9% O

oz’ + oy

The vanishing of this expression, however, denotes that the
curve ¢ = 0 is a potential curve. Therefore,

TreEorEM IV. Any potential curve is apolar to the funda-
mental conic of euclidean geometry consisting of the circular
points at infinity ; conversely, any curve which is apolar to this
Jundamental conic is a potential curve.t

From Theorem I we have then

TarEorEM V. All the polar curves of a circular point with
respect to a potential curve degenerate into sets of straight lines
passing through the other circular point; conversely, ete.

*Clebsch, ‘“Ueber einige von Steiner behandelte Kurven,”’ Crelle,
vol. 64, p. 288. The converse of the above theorem is not true.

t Cf. Clifford, ‘‘ On the canonical form of spherical harmonics,’’ Works,
p. 234, for a statement concerning ‘‘ nodal curves’’ on a sphere, which
appears to have some connection with the above.
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A conic is a potential curve when the circular points I, J
are conjugate with respect to it ; this implies that the conic
intersects the line at infinity in points which are harmonic
with respect to I and J, 4. e., that the asymptotes of the
conic are rectangular. From Theorem II, we have then a
statement of the characteristic property of potential curves
which has the advantage of dealing only with real elements,
as follows :

TaeorREM VI. A curve is a potential curve when, and only
when, the polar cowics of all points with respect to the curve are
rectangular hyperbolas.

From Theorem IIT we have a property, which is how-
ever not characteristic, 7. e., not restricted to the potential
curves :

TueorEMm VILI. The Hessian and the Steinerian curves of a
potential curve pass through the circular points I, J ; furthermore,
these points correspond in the sense defined by Clebsch.

Since the polar conics of a polar curve are the polar conics
of the original curve, we have

TueoreMm VIIT. Al the polar curves of a potential curve are
themselves potential curves.

§3. Focal Properties of Potential Curves.

Consider any rational integral function of the nth order
in 2z

(2) fle+1y) = o(x, y) + ¢(x, y),
together with the conjugate expression
(3) flo—iyp) =¢(z, y) —ig (2, y) ;

the equation of the potential curve ¢ =0 may be writ-
ten in the form

4) flx+iy) + [ (z—iy) =0.

The two terms of the left hand member of this equation,
equated separately to zero, represent sets of minimal lines,
the first representing n lines through I, and the second n
lines through J. Furthermore, equation (4) is unchanged
when f (z) is replaced by f (2) + ¢4, where 1 is an arbitrary
real constant. We have then

TrureorEM IX. The linear system of curves of the nth order
determined by 2n miminal lines (n through each of the circular
points) s composed of potential curves; conversely, any potential
curve may be obtained as o member of an infinite number of such
linear systems.
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This theorem may be restated by using the fact that a
curve of the nth class has »* foci, namely the intersections
of the n minimal tangents of one system with the » minimal
tangents of the other system, as follows :

TarOoREM X. Any curve of the nth order passing through the
n? foci of @ curve of the nth class is a potential curve; conversely,
all potential curves may be obtained wn this way—each potential
curve passes through the foci of an infinite number of systems of
confocal curves of the nth class.*

Thus for n =2, we have that all the conics which pass
through the two real and the two imaginary foci of a conic
are rectangular hyperbolas.

The potential curves ¢ =0, ¢ =0, obtained in the de-
composition of a function of « + 7y, may be termed conjugatet
potential curves, since the functions ¢ and ¢ are conjugate.
From (2) and (3) we have

) 20 = f(o + iy) + F (v — i),

2ip = flo —iy) — f(x — i) ;

therefore the curves belong to a linear system of the kind
considered above. Furthermorethey intersect orthogonally. |

TreeorEM XI. Conjugate potential curves of the mth order
intersect orthogonally in the foci of a system of confocal curves of
the nth class; conversely, two curves of the nth order which inter-
sect orthogonally in the foct of a curve of the nth class are conju-
gate potential curves.

The properties stated in Theorems IV and X being de-
finitive for the same class of curves, it follows that these
properties are equivalent. From this equivalence we may
pass to a more general result relating to the apolarity of a
curve and a point pair ; it is necessary merely to project the
circular points into an arbitrary pair of points, the potential
curves transforming into curves which are apolar to this
pair. Therefore, if through each of two points 4, B, n
straight lines are drawn, any curve of the nth order passing
through the n’ points so determined is apolar to the pair
A, B ; moreover this construction yields all the apolar curves.
This result may be restated :

TraeEorREM XII. A curve of the nth order is apolar to a pair
of points, A, B when, and only when, it is possible to find upon

* The number of parameters in such a confocal system is 3n(n—1); so
that the number of curves from which any potential curve may be de-
rived as a focal curve is w3 7"+

+ The term conjugate, of course, here refers to the properties of the
functions ¢, v, and is not synonymous with the term apolar.

1 Briot et Bouquet, p. 223.
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the curve n* points lying by n’s uponn lines through A and at the
same time upon n lines through B.*

§4. The Asymptotes.

Briot and Bouquet provet that the n asymptotes of a
potential curve of the nth order are real, concurrent, and
disposed symmetrically about their common point, the angle
between consecutive asymptotes being 2z/n. This prop-
erty, however, imposes only 2n — 3 independent condi-
tions, while the number imposed by the equation { A¢ =0
is #n(n — 1) ; so that in general (7. e.,if n > 3) the above
relation between the asymptotes is not peculiar to the po-
tential curves, and Briot and Bouquet’s theorem cannot be
converted. As to thecase n =2 §, it has been shown in §2
that the potential conics are the rectangular hyperbolas, so
that the relation between the asymptotes is characteristic.
The same is true in the case n= 3, as may be shown by
taking a codrdinate system with its origin at the point of
concurrence of the asymptotes and its axis of abscissas co-
inciding with one of the asymptotes, and verifying the con-
dition A¢ = 0. Therefore, the potential cubics may be defined
as those cubics which have three real concurrent asymptotes intersect-
ing at angles of 120°.

In all cases the point of concurrence O of the asymptotes is a
center of the curve, 1. ¢., if any line is drawn through O, the
sum of the distances measured from O of the points of inter-
section lying on one side of O is the same as the corres-
ponding sum for the points on the other side. This follows
from the fact that when the origin of codrdinates is taken
at O, all the terms of order n — 1 disappear. ||

From the potential curves we may pass by projection to
the curves which are apolar to any point pair 4, B. The
asymptotes of the potential curve are transformed into a set
of concurrent lines tangent to the new curve at the points
P, P, -, P wheretheline joining 4, B cuts the curve. From
the equality of the angles between consecutive asymptotes,
the anharmonic ratios

* When one such set of n? points exists there is necessarily an infinite
number of sets.

T L. e., p. 227.

1 The number of parameters in the potential curve of the nth order is
2n, so that of all the curves of the nth order which pass through 2n as-
signed points one and only one is potential.

? The case n =1 is trivial since all straight lines are potential curves.

|| Briot et Bouquet, p. 226 ; Salmon-Fiedler, Hohere Kurven, 2d ed.
p. 145,
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(ABRP‘z)’ (ABPzPa)’ " (ABPnP1)

are equal, and therefore the set of points P, -, P, is apolar
to the pair 4, B.

TrrorEM XIII. If ¢ curveis apolar to a point pair, the line
through the pair intersects the curve in a set of points apolar to
the pair, and the tangents to the curve at these points are con-
current.

The converse is true only for conics and cubics.

§4. Connection with the Theory of Equations.

Consider the general equation of the nth degree in one
unknown

(6) f() =A@+ A2+ + A, =0 (A,=b,+ i)

with the n roots
Za = To + Wa (a=1,2,-,n).

The conjugate equation
f(z) E—Eoz” + Z‘]zn—l + o+ an =0 (JTI‘ = b, —1¢,),
then has the roots
(N 20 = Ty — Y (a=1,2,-,n).

The complete solution of equation (6) is equivalent directly
to the real solution of the system

(8) o(z, y) =0, ¢(z, y) =0,

where ¢ and ¢ are the real and imaginary parts of f(z + ).
A problem which then presents itself, namely, the complete
solution of this system, is virtually answered in Theorem
X : the solutions, by (5), are obtained by solving the linear
equations

Tt y=2,, T—iy=2z (a, =1, 2, -, n).

TrrorEM XIV. The complete solution of the auailiory sys-
tem (8) connected with the equation (6) s

2a + 2 Zq — 2
2_3" Yop = ’—i (a7 f=1, 2; Ty n)'

Zag =

The n real solutions z,, y, are obtained by letting f =« ;
the remaining solutions may be expressed in terms of these
as follows :
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To+ Tp | Yo —Yp _YatYs _ % —Tp
g T g Y=gty

xap =

As is well known, the n quantities
R(z.) (a=1, 2, +,n),

where R denotes any rational function, satisfy an equation
of the nth degree
F.(1) =0,

whose coefficients are rational in 4, A4,, -, 4,. This,
however, no longer holds when we consider, instead of
rational functions of the roots, rational functions of the
real and imaginary parts of the roots; but if we consider
the n’ quantities

R (%agy Yap)s

they will satisfy an equation of the n* degree with coefficients

which are rational in terms of the coefficients of ¢ and

¢, 1. e., in terms of b, -+, b, ¢, -, ¢,. Therefore,
TraEOREM XV. The n quantities

R(zy, y,)y B(x, 4,),-5 B(2, 9,),

are the real roots of an equation of degree n* with coefficients
which are rational in terms of the real and imaginary parts of the
coefficients in (1) ; the remaining roots of the equation being

R(xa-gwﬁ+,£ya;ys, ya;ys+iwa2—xﬁ), (a = B).

This result may easily be extended to functions of any
number of roots E(w, y, %, ¥, ), and Theorem XIV
may be extended to any system of simultaneous equations.

CoLuMBIA UNIVERSITY,
February 25, 1901.

ALTERNATING CURRENT PHENOMENA.

Alternating Current Phenomena. By C. P. SteiNMETZ. New
York, Office of the Electrical World. Third Edition,
1900. Pp. xx + 525.

Toelectrical engineers Mr.Steinmetz’s book is immediately
conspicuous by reason of two distinguishing characteristics :



