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ON THE ALGEBRAIC POTENTIAL CURVES. 

B Y D R . E D W A E D K A S N E R . 

(Kead before the American Mathematical Society, February 23, 1901.) 

T H E object of this paper is to derive the characteristic 
geometric properties of a class of curves which are of in-

* The row for which m = 0 is of course merely a verification, leading 
to the known values 

S 2 - ^ 7 T 2 / 6 , Sé = 7r4/90. 
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terest in connection with the theory of equations and of the 
potential function. Analytically, these curves are obtained 
by equating to zero the rational integral solutions $P(JB, y) 
of Laplace's equation 

ox oy 

or, what is equivalent, the real (or imaginary) parts of the 
rational integral functions of x + iy. Various geometric 
properties are given in Briot and Bouquet's Théorie des 
fonctions elliptiques (book IV, chapter I I ) , but none are 
completely characteristic. 

§ 1. Apolarity with Respect to a Point Pair, 

A curve 
0 == ax

n = 0, 

is said to be apolar * to a conic 

Q = %PikUiUk = uP
2 = 0 , 

when every polar conic of the curve is circumscribed about 
an infinite number of triangles self-con jugate with respect 
to the conic Q ; i. e., when the bilinear covariant 

vanishes identically. 
Let the conic degenerate into a pair of points A, B, 

A = ua = 0, B = up = 0, 
so that 

Q = uaUfi ; 
then 

S = aaapax
n-2, 

which is the apolar covariant of the forms 

ua and upaj1"1, 
or of 

up and uaa^~~x. 

I t is easy to show, however, that a point and a curve can 
be apolar only when the curve consists of a set of straight 
lines passing through the point, so that 

*Reye, Crelle, vol. 79 (1874), p . 159. F o r a convenient summary of 
the theory of apolar relations see Schlesinger, Math, Annalen, vol. 22 
(1883), pp . 520-523. 
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T H E O R E M I . If a curve of the nth order is apolar to a point 
pair (considered as a degenerate conic), the first polar (and there­
fore any of the polars) of either of the points with respect to the 
curve consists of a set of lines passing through the other point ; the 
converse is also true. 

Let t ing n = 2, i t follows t h a t a conic is apolar to a point 
pa i r when the two points are conjugate wi th respect to t he 
conic. F r o m the definition of apolari ty we have then 

T H E O R E M I I . If a curve is apolar to a point pair, the latter 
is self-conjugate with respect to all the polar conies of the curve ; 
conversely, etc. 

Since from Theorem I both t he first polar and the polar 
conic of ei ther point have nodes, we have 

T H E O R E M I I I . If a curve is apolar to a point pair, both the 
Hessian and the Steinerian of the curve pass through the point 
pair ; furthermore, these points correspond in the sense defined by 
Clebsch.* 

§ 2 . Polar Properties of Potential Curves. 

Ins tead of an a rb i t ra ry point pair , consider now the pair 
of circular points a t infinity I, J. T h e equation of th is 
point pair in rec tangular l ine coordinates may be wr i t ten 

u2 + v2 = 0 ; 

so tha t , expressed in rec tangular point coordinates, t he co-
var ian t S of t he preceding section becomes 

ay ay 
dx2 + dy2' 

T h e vanishing of th is expression, however, denotes t h a t the 
curve (p = 0 is a potential curve . Therefore, 

T H E O R E M I V . Any potential curve is apolar to the funda­
mental conic of euclidean geometry consisting of the circular 
points at infinity; conversely, any curve which is apolar to this 
fundamental conic is a potential curve, f 

F r o m Theorem I we have then 
T H E O R E M V . All the polar curves of a circular point with 

respect to a potential curve degenerate into sets of straight lines 
passing through the other circular point ; conversely, etc. 

^Clebsch, "Ueber einige von Steiner behandelte Kurven," Orelle, 
vol. 64, p. 288. The converse of the above theorem is not true. 

t Cf. Clifford, " On the canonical form of spherical harmonics, " Works, 
p. 234, for a statement concerning " nodal curves " o n a sphere, which 
appears to have some connection with the above. 
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A conic is a potential curve when the circular points I, J 
are conjugate with respect to it ; this implies that the conic 
intersects the line at infinity in points which are harmonic 
with respect to J and J, i. e., that the asymptotes of the 
conic are rectangular. From Theorem I I , we have then a 
statement of the characteristic property of potential curves 
which has the advantage of dealing only with real elements, 
as follows : 

THEOREM VI . A curve is a potential curve when, and only 
when, the polar conies of all points with respect to the curve are 
rectangular hyperbolas. 

From Theorem I I I we have a property, which is how­
ever not characteristic, i. e., not restricted to the potential 
curves : 

THEOREM VI I . The Hessian and the Steinerian curves of a 
potential curve pass through the circular points J, J ; furthermore, 
these points correspond in the sense defined by Glebsch. 

Since the polar conies of a polar curve are the polar conies 
of the original curve, we have 

THEOREM VI I I . All the polar curves of a potential curve are 
themselves potential curves. 

§ 3. Focal Properties of Potential Curves. 

Cousider any rational integral function of the nth order 
in z 

(2) f{x + iy) == <p(x, y) + i<fi(x, y), 

together with the conjugate expression 

(3) ƒ (x — iy) == <p(x, y) — i<p(x, y) ; 

the equation of the potential curve <p = 0 may be writ­
ten in the form 

(4) f(* + iy)+f(x-iy) = 0. 

The two terms of the left hand member of this equation, 
equated separately to zero, represent sets of minimal lines, 
the first representing n lines through I, and the second n 
lines through J". Furthermore, equation (4) is unchanged 
when ƒ (z) is replaced by ƒ (z) + ü, where A is an arbitrary 
real constant. We have then 

THEOREM IX. The linear system of curves of the nth order 
determined by 2n miminal lines (n through each of the circular 
points) is composed of potential curves ; conversely, any potential 
curve may be obtained as a member of an infinite number of such 
linear systems. 
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This theorem may be restated by using the fact t h a t a 
curve of the nth class has n2 foci, namely the intersections 
of t he n minimal tangents of one system with the n minimal 
t angents of t he other system, as follows : 

T H E O R E M X . Any curve of the nth order passing through the 
ri* foei of a curve of the nth class is a potential curve ; conversely, 
all potential curves may be obtained in this way—each potential 
curve passes through the foci of an infinite number of systems of 
confocal curves of the nth class. * 

T h u s for n = 2, we have tha t all t he conies which pass 
t h rough the two real and the two imaginary foci of a conic 
are rec tangular hyperbolas. 

T h e potent ia l curves <p = 0, <p = 0, obtained in the de­
composition of a function of x + iy, may be termed conjugate^ 
potential curves, since the functions <p and <p are conjugate. 
F r o m (2) and (3) we have 

2<p=f(x + iy) +f(x — iy), 

2i(P = f(x — iy) —f(x — iy) ; 

therefore the curves belong to a l inear system of the k ind 
considered above. F u r t h e r m o r e they intersect orthogonally. % 

T H E O R E M X L Conjugate potential curves of the nth order 
intersect orthogonally in the foci of a system of confocal curves of 
the nth class ; conversely, two curves of the nth order which inter­
sect orthogonally in the foci of a curve of the nth class are conju­
gate potential curves. 

T h e propert ies s tated in Theorems I V and X being de­
finitive for the same class of curves, i t follows t h a t these 
propert ies are equivalent . F r o m this equivalence we may 
pass to a more general resul t re lat ing to the apolari ty of a 
curve and a point pair ; i t is necessary merely to project the 
circular points in to an a rb i t ra ry pair of points, t he potential 
curves t ransforming in to curves which are apolar to th is 
pair . Therefore, if th rough each of two points A, B, n 
s t ra ight lines are d rawn, a n y curve of t he n th order passing 
th rough the n2 points so determined is apolar to the pair 
A,B ; moreover this construct ion yields all t he apolar curves. 
Th i s resul t may be res ta ted : 

T H E O R E M X I I . A curve of the nth order is apolar to a pair 
of points, A, B when, and only when, it is possible to find upon 

* The number of parameters in such a confocal system is \n(n—1) ; so 
that the number of curves from which any potential curve may be de­
rived as a focal curve is oo^(w2_ n + 2K 

f The term conjugate, of course, here refers to the properties of the 
functions 0, i>, and is not synonymous with the term apolar. 

t Briot et Bouquet, p. 223. 
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the curve n2 points lying by n's wponn lines through A and at the 
same time upon n lines through B.* 

§ 4. The Asymptotes. 

Briot and Bouquet prove f that the n asymptotes of a 
potential curve of the nth order are real, concurrent, and 
disposed symmetrically about their common point, the angle 
between consecutive asymptotes being 2TÜ/U. This prop­
erty, however, imposes only 2n — 3 independent condi­
tions, while the number imposed by the equation J /\<p = 0 
is \n(n — 1) ; so that in general {%. e., if n > 3) the above 
relation between the asymptotes is not peculiar to the po­
tential curves, and Briot and Bouquet's theorem cannot be 
converted. As to the case n = 2 §, it has been shown in § 2 
that the potential conies are the rectangular hyperbolas, so 
that the relation between the asymptotes is characteristic. 
The same is true in the case n = 3, as may be shown by 
taking a coordinate system with its origin at the point of 
concurrence of the asymptotes and its axis of abscissas co­
inciding with one of the asymptotes, and verifying the con­
dition A <p = 0. Therefore, the potential eubics may be defined 
as those cubies which have three real concurrent asymptotes intersect­
ing at angles of 120°. 

In all cases the point of concurrence O of the asymptotes is a 
center of the curve, i. e., if any line is drawn through 0, the 
sum of the distances measured from 0 of the points of inter­
section lying on one side of 0 is the same as the corres­
ponding sum for the points on the other side. This follows 
from the fact that when the origin of coordinates is taken 
at 0, all the terms of order n — 1 disappear. || 

From the potential curves we may pass by projection to 
the curves wThich are apolar to any point pair A, B. The 
asymptotes of the potential curve are transformed into a set 
of concurrent lines tangent to the new curve at the points 
PVP^ —, Pn where the line joining^, B cuts the curve. From 
the equality of the angles between consecutive asymptotes, 
the anharmonic ratios 

* When one such set of n2 points exists there is necessarily an infinite 
number of sets. 

f L . c , p. 227. 
% The number of parameters in the potential curve of the wth order is 

2n, so that of all the curves of the nth order which pass through 2n as­
signed points one and only one is potential. 

§ The case n = 1 is trivial since all straight lines are potential curves. 
|| Briot et Bouquet, p. 226 ; Salmon-Fiedler, Höhere Kurven, 2d ed. 

p. 145. 
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(ABP.PJ, (ABP2P3), - , {ABPmPx) 

are equal, and therefore the set of points Pv —, Pn is apolar 
to the pair A, B. 

THEOREM X I I I . If a curve is apolar to a point pair, the line 
through the pair intersects the curve in a set of points apolar to 
the pair, and the tangents to the curve at these points are con­
current. 

The converse is true only for conies and cubics. 

§ 4. Connection with the Theory of Equations. 

Consider the general equation of the nth degree in one 
unknown 

(6) ƒ(*) E* Af + A,z^ + .- + An = 0 (Ak =bk + ick), 

with the n roots 
%a = xa + iya 0 = 1, 2, -~,n). 

The conjugate equation 

ƒ(*) « If + i>~* + ... + Jn « 0 (I, = 6* - *0> 
then has the roots 

( 7 ) Za=Xa — iya (« = 1, 2 , - , 7l). 

The complete solution of equation (6) is equivalent directly 
to the real solution of the system 

(8) 9(x, y) = 0, 0(s, 2/) = 0, 

where ? and <p are the real and imaginary parts of f(x + iy). 
A problem which then presents itself, namely, the complete 
solution of this system, is virtually answered in Theorem 
X : the solutions, by (5), are obtained by solving the linear 
equations 

x + iy = za, x — iy = z^ (a, p = 1, 2, - , n). 

THEOREM XIV. The complete solution of the auxiliary sys­
tem (8) connected with the equation (6) is 

Sa0 = — 2 ' y<# = H â i ( s Z5 = *> 2, - , n). 

The n real solutions xa , ya are obtained by letting /3 = a ; 
the remaining solutions may be expressed in terms of these 
as follows : 
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_xa + xp .ya — yp __ya + y? .xa-xp 
* , * — 2 — + * — 2 ~ ' y * 2" t — 2 ~ " * 

As is well known, the n quantities 

2 2 ( 0 (« = 1,2, - , n ) , 

where i? denotes any rational function, satisfy an equation 
of the nth. degree 

KH) = o, 
whose coefficients are rational in A0J Av •••, An. This, 
however, no longer holds when we consider, instead of 
rational functions of the roots, rational functions of the 
real and imaginary parts of the roots ; but if we consider 
the n2 quantities 

-#Oa/3, y ai), 

they will satisfy an equation of the n2 degree with coefficients 
which are rational in terms of the coefficients of <p and 
0, i. e., in terms of b0, •••, bnJ c0, •••, cn. Therefore, 

THEOREM XV. The n quantities 

E(xv yx), E(x2J t/2),..., E(xn, yn), 

are the real roots of an equation of degree n2 with coefficients 
which are rational in terms of the real and imaginary parts of the 
coefficients in (1) ; the remaining roots of the equation being 

\ Zi A Ji A f 

This result may easily be extended to functions of any 
number of roots E(xv yv x2, y2, •••)>

 a n d Theorem X I V 
may be extended to any system of simultaneous equations. 

COLUMBIA UNIVERSITY, 
February 25, 1901. 

ALTERNATING CURRENT PHENOMENA. 

Alternating Current Phenomena. Bv C. P. STEINMETZ. New 
York, Office of the Electrical"World. Third Edition, 
1900. Pp. xx + 525. 
Toelectrical engineers Mr. Steinmetz's book is immediately 

conspicuous by reason of two distinguishing characteristics : 


