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ON WRONSKIANS OF FUNCTIONS OF A 
REAL VARIABLE. 

BY PROFESSOR MAXIME BÔCHER. 

(Read before the American Mathematical Society, August 20, 1901.) 

T H E important part played by the real roots of solutions 
of homogeneous linear differential equations of the second 
order is well known. When we pass to equations of higher 
order, it becomes necessary to consider not only the roots of 
the solutions of the equations, but also the roots of Wrons-
kians* of sets of linearly independent solutions. Unless 
we are willing to confine ourselves to the case in which the 
coefficients of the differential equation, and therefore also 
the solutions, are analytic functions, a number of questions 
present themselves to us at the very outset—for instance 
the question whether such Wronskians can have an infinite 
number of roots in a given interval ; and again the ques
tion to what extent the theory of the adjoint f differential 
equation remains valid when the coefficients of the differ
ential equation are not assumed to be analytic but merely 
continuous functions. I t is my object in the present paper 
to settle some of these questions and thus clear the way for 
further investigations. In doing this I have first considered 
the slightly more general subject of linear families of which 
the solutions of a homogeneous linear differential equation 
form a special case. 

§ 1. Exponents. 
We will say that a function J ƒ of the real variable x has 

at a point c the exponent x if throughout the neighborhood 

(1) ƒ(*) = (x - cYE(x) 

*I shall denote the Wronskian of m f unctions flt /2, —, /m , that is the 
determinant whose ith row is 

by W (ƒ,».,ƒ•.). 
t Adjungirte. Cf. Schlesinger, Handbuch, vol. 1, pp. 53-75, where 

proofs of the theorems in the case of analytic functions are given, as well 
as references to the original memoirs. 

t The functions of a real variable used in this paper need not neces
sarily be real. 
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where E(x) is continuous at c and throughout its neighbor
hood and E(c) =4=0. 

I. A function cannot have two different exponents at the same 
point 

Throughout the present paper we will denote by ( J ) the 
interval 
( J ) a^x^b. 

I I . If f(x) has an exponent at each point of (J) it cannot 
have more than a finite number of discontinuities in (J"), nor can 
it have more than a finite number of roots in ( J ) . 

For if f(x) had an infinite number of discontinuities, or 
of roots, or of both, these points would have at least one 
limiting point c in ( J ) . But since ƒ has an exponent at c 
it is continuous and different from zero throughout the 
neighborhood of c. 

We will from now on confine ourselves to the case of real 
exponents. If ƒ(#) has an exponent at c and if A; is a con
stant not zero it is clear that kf(x) has the same exponent 
there. If fx(x) and f2(x) have different real exponents at 
c ' .A 0 0 + /2(^) n a s a n exponent at c, namely the smaller of 
the two exponents of fx and fr A combination of these 
two facts gives us the following theorem : 

III. If'f^x),f2(x), ••• ,fm(x) have at c real exponents no two of 
which are equal, and if Jcv h2) •••, km are constants no one of which 
is zero, then the function 

*,/i(*) + *J,(») + - + *.ƒ„(*) 
has an exponent at c, namely the smallest of the exponents of fv 

By combining I I . and I I I . we get the further theorem 
IV. If fv /2, "m,fm have at c real exponents no two of which are 

equal, then these functions are linearly independent. * 
If f(x) is continuous at c, then to say that it has the ex

ponent zero at c merely means that it does not vanish there ; 
while instead of saying that it has the positive integral ex
ponent x at c we might very well say that it has a *~fold root 
at this point.f The following theorem shows that the 
familiar test for the multiplicity of a root is valid provided 
the necessary derivatives exist and are continuous : 

* For a special case of this theorem cf. Heffter : Lineare Differential-
gleichungen, p. 236. 

f Thus for instance the property which «-fold roots of real analytic fun-
tions have that on opposite sides of such a root the function has the same 
or opposite signs according as K is even or odd is at once seen to hold here 
if f(x) is real. 
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V. If throughout an interval including a point c f(x) is con
tinuous and has continuous derivatives of the first % orders, a 
necessary and sufficient condition that f(x) have the exponent * 
at c is 

(2) j™(c) = 0 (î = 0 , l , . . - , * - l ) ; / M ( c ) + 0 . * 

For if conditions (2) are fulfilled we have by Taylor's 
theorem, if we use Lagrange's formula for the remainder, 

(3) f(x) - - ( ^ > " ƒ W [c + 0{X- c)] ,f 

where 0 is a function of x satisfying the inequality 0 < e < 1. 
"When x=\=c, f W [c -}- o (x — c)] is continuous because it is 
then equal t o z ! ( a ; - c)~K ƒ (#). When x = c, it is also con
tinuous since x

l™\ ƒ M [c + 0(a —c)] = / W ( c ) . Since this 
last quantity is not zero, (3) is a special case of (1) and 
therefore f(x) has the exponent *. 

Conversely, if ƒ (x) has the exponent zat c, we see by the 
part of the theorem just proved that none of the quantities 
ƒ[i] (c) (i < x) can be different from zero. That ƒ [/c](c) 4= 0 
follows at once from (3) when we let 

for we then find 

(4) 2 J ( o ) ~ i / M ( c ) . 

If we apply the theorem just proved and formula (4) 
not tof(x) but t o / ^ (x) we get the theorem J 

VI. Iff(x) has the exponent * at c. and in an interval includ
ing c is continuous and has continuous derivatives of the first x 
orders, then f ^(x) (J = 1, 2, •••,*) has the exponent % —j at c, 
and if we write 

*If f(x) has an exponent, not necessarily integral, greater than K it 
can readily be proved that even though f(x) has no derivatives of order 
higher than K 

ƒ [ < ] ( c ) = 0 (t = 0, 1, - , K). 

fThis formula must be slightly modified if f(x) is a complex function 
of the real variable x, the real quantity 6 being then different in the real 
and the imaginary part of ƒ 0 ] . No difficulty, however, is introduced 
hereby ; and in fact f(x) may be complex throughout the whole of the 
present paper. 

t I t should be noticed that we cannot simply say that if f(x) has the 
exponent «, and if f(x) exists and is continuous, then f'(x) has the ex

ponent K—1. This is seen by considering the f unction x2 -f- x* sin — 

at the point x = 0. 
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Six) = (x- cYE{x), fi* (x) = O - c)^Et(x), 
then 

(5) £ / c ) = x (x - 1 ) ... (* -j + 1) E(e). 

§ 2. Linear Families and Their Bases. 
ket 2/i? Vti '"? 2/ft ^ e functions of the real variable x which in 

the interval 
( J ) a^x^b 

are linearly independent. The family of functions repre
sented by the formula 

(6) C& + C& + - + Cjfc, 

the C?s being arbitrary constants, we will call a linear family. 
By a &a$is of this family we understand a system of linearly 
independent functions ijv TJ2, —, ̂ msueh that the linear family 

(7) K{rn+ Ki%+ ... + Kmr!m 

is identical with (6). In particular therefore the y's form 
a basis. Moreover if the Vs form a basis each of them must 
be a function of the family (6). 

VII . A necessary and sufficient condition that the functions r]v 
rj2J ••• 1rjm belonging to the family (6) form a basis is that they are 
linearly independent and that m = k. 

For expressing the Vs as linear functions of the y's we 
easily see that if m > k the Vs must be linearly dependent, 
and therefore cannot form a basis. 

On the other hand if m < k and the Vs formed a basis, the 
y's would form a basis of (7) ; and this is impossible by 
what we have just proved. 

Finally if m = k, let us write 

(8) % = €LnVl + a.2y2 + .- + *ikyk (i = 1, 2, - k). 

Substituting this in (7), we see that every function of (7) 
belongs to (6). If the Vs are linearly independent the de
terminant of the a's must be different from zero. Equations 
(8) can therefore be solved for the y's, and these values 
substituted in (6). We thus see that every function of (6) 
belongs to (7) ; that is, (6) and (7) are identical. 

Let us now impose on our linear family (6) the further 
restriction, that every function, except zero, of the family has 
a real exponent at the point c of ( J ) . 

Among all the functions of this family there cannot be 
more than k different exponents for a given point c of (J) 
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as we should otherwise, by IV., have more than k linearly 
independent functions in the family. I t is less obvious that 
the number of distinct exponents at c cannot fall below k. 
This can, however, be proved as follows : 

Suppose there were I and only I distinct exponents at c, 
and I < k. Denote these exponents in order of increasing 
magnitude by xv xa, — ,xl# Let TJV ^2, " - ,^ be functions 
which have at c the exponents xv *2 —, x% respectively. 
Since 7}v TJV ~-17jl do not form a basis, being less than k in 
number, there exist functions of the family which are lin
early independent of them. Let xm be the largest of the 
exponents to which corresponds a function i)m of the family 
linearly independent of rjv YJ2, •••, riv and write 

y]m = O — c)K™E(x), f)m = O — c)*«JË(flj). 

The function 

may be written 

E(c) -

•q(x) = (x — c)K™<p(x), 

where <p(c) = 0. I t therefore does not have at e any of the 
exponents xv x2, —, xm, and hence, since it is a member of 
the family, it must have an exponent larger than xm and 
must therefore be linearly dependent on the ^'s, 

j£(c) _ 
^SX) - "^TT^O») = <Wl(*0 + - + <V?*0)-

But this makes rjm linearly dependent on yv •••, yv and this is 
contrary to hypothesis. We have thus proved the theorem 

VI IL If in the linear family (6) every function except zero 
has at e a real exponent, then among these exponents there exist k 
and only k distinct values. 

We will speak of these k quantities as the exponents of 
the family at c. 

Any set of k functions of the family corresponding at c to 
these distinct exponents will form a basis. Such a basis we 
will call a principal basis for the point c. 

§ 3. Boots of Wronskians. 

Let us now assume that yv y2, ..., yk, besides being linearly 
independent throughout ( J ) , are continuous and have con
tinuous derivatives of the first n — 1 orders (n = k) through
out this interval. The same will then be true for every 
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function of (6), and we will assume that no function of the 
family, except zero, vanishes together with its first n — 1 deriva
tives at any point of (J). Every function of the family will 
therefore, by V., have at any point of (J) an integral expo
nent x, where 0 l=ix É=n — 1. We will now prove a similar 
theorem for the Wronskian of them's* 

IX . At any point c of (J*) the Wronskian 

W(yv y2, - , yk) 

has an integral exponent x? where 

(9) O^x^k(n-k). 

Let x1? *2, —<,*k be the exponents of the family at c, and 
let 7]v 7)2 •••, 7)k be a principal basis of the family at this point. 
Then 

W(yv y]2 - , yjk) = CW(yv y„ - , yk), 

where C is a non-vanishing constant, namely the determi
nant of the transformation (8). Accordingly it will be 
sufficient to prove that W(j)v

 t",rih) has an exponent x at c 
satisfying the above written inequality. 

Let us write 

(10) yj^x) = A& - c)s [1 + ?,(*)] (i = 1, 2, - , *) , 

where A. is a non-vanishing constant and <p. a function of x 
continuous throughout ( J ) and vanishing at c. We can 
write further 

(li) ^ w = ^ - c ) ^ h ( « r i ) . » ( « r i + i)+ n.(*0] 
( i = l , 2 , » . , f c ; i ; = l , 2 , - , f c - l ) , 

where the functions <pq are continuous throughout ( J ) and 
vanish at c. This formula follows at once from VI. when 
j Ë=x., while when j > x. its correctness is seen directly when 
we let 

since the quantity %.(•/.. — 1)— (x. — j + 1) is zero in this 
case. 

Substituting (10) and (11) in W(jiv —,i}k) we find 
k(k — 1) 

(12) % . » , Î > A.A^A^x - c)«i+».+ -+«*- - — J (s) , 
where 

* I t may be noted that the derivatives of the yys do not necessarily 
have exponents at all points of (J). They may for instance vanish an 
infinite number of times in (J). 



1901 . ] WRONSKIANS IN CASE OF A REAL VARIABLE 59 

J(*0= 

i+^O) - i+^O) 

X i ( X i «l) . . . ( X i « f c + 2) - Xjfc(xJt-l)...(xJfc-*+2) 

Throughout ( J ) J (a?) is continuous and, since all the $e's 
vanish at c, 4(c) is equal to the product of the differences 
of the x's. No two of the *'s being equal, 4(c) =j==0. 

Thus we see from (12) that W(i}v —,yk), and therefore 
also W(yv '",yk), has at c the exponent 

(is) z = Zi + Z2 + ... + Z j _M^zl l . 

The least possible value of x is obtained by giving to xv 
x2, •••, xk the values 0, 1, —, k — 1 ; and the greatest possible 
value by giving them the values n — 1c, n — & + 1, •••, n — 1. 
Therefore 

O^x^k(n-k). 

Combining the theorem jusfc proved with I L , we see that 
X ' WCVv '"iVk) cann°t vanish an infinite number of times in 

( j - ) .* 
"When W(yx(c), y2(c), •••, yk(c)) ~\=0 we have x = 0. There

fore 
XL Except at the points where W(yv •••, yk) = 0, the family 

(6) has the exponents 0, 1, •••, k — 1. 
Another consequence of (13), a direct proof of which is 

also very simple, is that, when k = n, W(yv •••, yn) vanishes 
nowhere in ( J ) . f 

Finally we introduce the conception of sub-families as 
follows : 

Let rjv 7]2, -.., r}m(m < k) be linearly independent functions 
of the family (6). With these functions as a basis we con
struct a family (7), which since it is wholly contained in 
(6) we call a sub-family of (6). These sub-families all 
satisfy the conditions stated at the beginning of this section, 

* A special case of this is the theorem that W(y^ • • -, yu) is not identi
cally zero. I t should be noticed that we thus get a new proof of this 
theorem since we have made no use of it up to this point. 

t Conversely it can readily be proved that if yx, •••, yn are any functions 
which are continuous and have continuous derivatives of the first n — 1 
orders throughout (J) and whose Wronskian does not vanish in (J), then 
they form a basis of a linear family, none of whose members, except zero, 
vanishes together with its first n — 1 derivatives at a point of (.7"). 
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and hence theorems IX. , X., X L , apply to them. In par
ticular we see that the Wronskian of any set of linearly in
dependent functions of the family has an exponent at every 
point of (ƒ ) . 

§4. The Adjoint Family. 

We will begin here by assuming merely that yv —, y& are 
continuous and linearly independent throughout ( J ) and 
have throughout this interval finite derivatives of the first 
k — 2 orders. 

Let us consider the Wronskians 

(14) Wt = W(y» - , y«-i, y,+1, - , yk) ( * « 1, 2, - , h) 

Let 0V 6V •••, 0 M , be any k — 1 functions of the family (6), 
say 

(15) 0i = aa yx + aa y2 + - + aik yk (i = 1, 2, - , k • 

I t is at once seen that 

(16) W(ev - , *,_,) = Cl F t + c2 Tf2 + - + ok Wk, 

where 

! ) • 

(17) 
i 

«11 
«2! 

«*~ 11 ' 

" «11-1 

" au-u-

a2t+l 

-1%-l t+l * ' ak-n 

( i - 1 , 2 , - , * ) . 

Conversely if the constants c are given, the a's can be so 
determined that equations (17), and therefore also equa
tions (16), hold.* That is, 

X I I . The Wronskians of the functions of the family (6) taken 
k — 1 at a time themselves form a linear family. 

Moreover the proof just given shows that either the func
tions Wv —, Wh or, if they are linearly dependent, some 
functions taken from among them form a basis of this new 
family. In this last case we should have a relation of the 
form 

o,TFi+ - + <>» F 4 - 0 , 

where the c's are not all zero. The a's being then computed 

* If all the c's are zero this is obvious If not, suppose cY 4= 0. "We 
have then merely to choose all the a's except a u , a21, - , ak-u so that when 
t —1 (17) is satisfied, and then to determine the remaining a's by means 
of the equations 

an a— aiïC'2-\ \- (—1)*- I a«r f c =r0 (t = l , 2, —, k — i). 
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as above from (17), the 0's would be linearly independent, 
but W(0V —, 0k_x) = 0. Thus we have the theorem 

X I I I . The functions Wv *"9Wk are linearly independent unless 
there exist k — 1 linearly independent functions in the family (6) 
whose Wronskian vanishes identically.* 

Let us now impose on the functions yv •••, yk the further 
restrictions which are stated at the beginning of § 3. The k 
functions 

(18) * - ( - 1 ) , + ' I F S £ S <*-'.»."•*> 
we calif the functions adjoint to yv —,yk- We then have 
the theorem 

XIV. The functions formed by dividing the Wronskians of the 
functions of (6) taken k — 1 at a time by the Wronskian of a 
basis of (6) themselves form a linear family—the family adjoint 
to (6). The functions adjoint to any basis of (6) form a basis of 
this adjoint family. 

To this may be'added, if we refer to (13), 
XV. If fjv ••-, yk form a principal basis of (6) at the point c, 

then the adjoint functions Zv ••, Zk form a principal basis of the 
adjoint family at c. If the exponent of •qi at c is x0 the exponent 
of C. will be k — 1 — xv 

§ 5. Applications to Differential Equations. 

We will now consider the differential equation 

dnii dn~1/)i 

(19) P C y ) . ^ + f t _ | + . . . + 1 , J , - o > 

where pv —,pn are throughout (J) continuous functions of 
the real variables. Theorems IX. and X. give us at once 

XVI . If yv ~-,yk are linearly independent solutions of (19), 
and if c is any point of (J) then W(yv —,yk) has an integral ex
ponent x at c, where 

0^x^k(n — k). 

XVII . The Wronskian of k linearly independent solutions of 
(19) cannot vanish an infinite number of times in (J"). 

Let us now look at the question of determining the mul
tipliers of the equation (19), that is functions z such that 

* Sufficient conditions that this should not occur will be found in my 
paper in the Transactions,, vol.2, p. 139. 

f Frobenius introduced this term in Crelle, vol. 77, p. 250. 
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^ ^)-s[43 + 43 + "- + « l 
I t is clear that we must here have 

Equation (20) then becomes equivalent to the following 
set of equations : 

? i '=Pi2 i -9 2 > q*=P& — Q» 
(21) 

qnr-l = Pn-lÇl — qM 9n' = PnÇv 

These form a set of simultaneous linear homogeneous dif
ferential equations of the first order for determining the #'s. 
I t is customary to eliminate q2J'",qn between equations (21) 
and thus get a homogeneous linear differential equation 
of the nth. order—the equation adjoint to (19)—for qx 
(or 3).* This method, however, is not open to us unless 
we are willing to assume that the coefficients, pv p2, — <,pn-i 
have derivatives of orders n — 1, n — 2, —, 1 respectively. 

From equations (21) we infer directly that the multi
pliers of (19) form a linear family whose bases consist of 
n functions each. This family is in fact adjoint to the 
family of solutions of (19). This last fact is most readily 
proved by establishing by the method of Frobeniusf the 
formula 

* W e obtain of course in the same way equations for the other #'s. 
The equation satisfied by q% has been termed the {n — i 4 -1 )th adjoint equa
tion, so that what is ordinarily called simply the adjoint equation would 
be the nth. adjoint equation. Cf. Cels, Ann. de VEc. norm, sup., 3d 
ser., vol. 8 (1891), p. 341, and some more recent papers in Crelle. 

fCf. Crelle, vol. 77 (1874) p. 248. The method consists of deducing 
(22) from a special case of the important general formula 

(F) W(y19 - , yn)[W{yY, . . . , y m ) ] * - « - 1 = W(wmh wmi, - , wmic-m) 
( l ^m^fc—1) , 

where 
« w = W{yu - , ym, ym + i) (̂  = 1, 2, - , k — m). 

Frobenius's method of proving the formula (F) consists in first es
tablishing the formula directly when m — 1, and then using the method 
of mathematical induction. Each of these two steps requires a slight 
addition to make it rigorous when we are dealing with non-analytic func
tions of a real variable. Thus what we establish by the general step in 
the mathematical induction is 

W(ylt - , yic)\_W(yi, - ,y«)]*-"- 1[W r(y 1 , - , ^ 1 ) ] * - » 

=-• W{wmh Wm2, - , Wm*-m)[TF(2/i, - , ^ - l ) ] * - " * , 
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(22) ^{y)-dxy{ i) T ( ^ - ^ J J' 

where yv -~,yn are any set of n linearly independent solutions 
of (19) and zv —, zn are the functions adjoint to them. Thus 
we have proved the theorem 

XVII I . A necessary and sufficient condition that z be a multi
plier of (19) is that it be a member of the linear family adjoint to 
the family which consists of the solutions of (19). 

G RUND IM HARZ, 
July 20, 1901. 

THE CONFIGURATIONS OF THE 27 LINES ON A 
CUBIC SURFACE AND THE 28 BITAN-

GENTS TO A QUARTIC CURVE. 

BY PROFESSOR L. E. DICKSON. 

(Read before the American Mathematical Society, August 20, 1901.) 

Introduction. 

AFTER determining * four systems of simple groups in an 
arbitrary domain of rationality which include the four sys
tems of simple continuous groups of Lie, the writer was led 
to consider the analogous problem for the five isolated sim
ple continuous groups of 14, 52, 78,133, and 248 parameters. 
The groups of 78 and 133 parameters are related to certain 
interesting forms of the third and fourth degrees respect
ively.! They suggested the forms C (§ 1) and Q (§ 3). 

I t is shown in § 1 that the cubic form C defines the con
figuration of the 27 straight lines on a cubic surface in or-

the functions yx, •••, yn being supposed to be any functions of x which 
throughout (J*) have continuous derivatives of the first k — 1 orders. 
This establishes the truth of (F) at all points of (J) except where 

W(yv-,ym-i)=0. 
If c is a point where this last equality holds two cases are possible : 1° 
there may be points in every neighborhood of c where the equality does 
not hold and where therefore (F) holds. In this case, on account of the 
continuity of both sides of (F), this formula holds also at c 2°, 
W(yu •••, ym—i) may vanish identically throughout the neighborhood of c. 
In this case (F) also holds at c since all the Wronskians which occur in 
it vanish at c ; cf. Transactions, vol. 2, p. 148. 

* Abstract presented to the Society, Aug. 20, 1901, to appear in ex
tenso in the Transactions. A note on the subject appeared in Comptes 
vendus, CXXXII . (1901), pp. 1547-8 . 

f Cartan, Thèses, Paris, 1894. 


