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where the £'s are analytic functions of n independent vari
ables xv •-, #n)> denote r independent infinitesimal transfor
mations of a given r parameter group. The finite equa
tions of the one-parameter groups generated by each of the 
infinitesimal transformations Xj (j = 1,2, •••, r) may be ob
tained by integration of the r simultaneous systems 

UX-, UXn -, 
_ _ - — . s ^ . . . : = _ - _ —— r = : QJQJ 

^j\\X\ } ""> Xn ) V » \ ^ l > ""> ^ » / 

( j = l , 2, . . . , r ) , 

subject to the condition that re/ = #. (i = 1, 2, —, n) for 
a = 0, a being an arbitrary parameter. Let the integrals 
of these simultananeous systems be represented by the 
equations 

xt ^/at*!» -> *«> <0 (* = !> 2> *"> n ; * = 1, 2, - , r). 

Performing upon the manifold xv —, #n a general transfor
mation Tj of the one parameter group generated by Xl we 
obtain the manifold #/, •••, a?n'; performing upon this latter 
manifold a general transformation T2 generated by X2, we 
obtain the manifold #/', •••, #n", etc. Thus we have 

# 1 = = = J l l ( ^ l > *'*> ^»> a i ) ? * " Xn = = Jni\Xv ' " ? ^w) a i ) > 

^ 1 tSSfl2\Xl > "'l Xn ? a
3 ) ? '* ' Xn = / n 2 ( ^ i ? ""> # n > a

2 ) > 

where a1? •••, ar are arbitrary parameters. Eliminating 
xi) '"> xnr~1] between these equations, we have 

xir)==fi(xv '"7 xm <*v - , «,) 0' = h 2, - , n) , 
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or, if we denote the transformed variables a\(r), —, xn
(r) by 

#/, •••, xn' respectively, 

C1) xi,==fi(xv - ? xn, «h, - , <*r) (<= 1, 2, ..-, n) , 

in which the parameters av •••, ar are all essential. These 
equations define cor transformations of the given r-para-
meter group.* 

This method will now be applied to finding the finite 
equations of the group whose infinitesimal transformations 
are 

ir — 3 v _ 3 , 3 
.A! = ^— , .A2 = #2 ö r Ö—* 

OX2 OX2 OXl 

ri 

The infinitesimal transformation ^— generates the one-para-
öx>i 

meter group whose finite equations are 

(2) x/ = xv x2
f = x2 + al9 

d d 
and similarly x2 =—(- —̂ generates the one-parameter 

group whose finite equations are 

(3) < ' = < + a2, < ' = <6*2. 

Eliminating #/, a?2' between equations (2) and (3) we have 

or, replacing a?/, #2" by #/, #/, 

(4) a?/ = xx + a2, < = x^ + axe
aK 

These equations define a transformation Ta of the given 
group G. Similarly, the equations defining a transforma
tion Th of G are 

(5) a?/' = a/ + 62, a;/ = a?,V« + bxe\ 

The transformation T63Pa, obtained by the composition of 
the transformations Ta and Tb in the order named, is defined 
by the equations 

(6) xl' = ^ + a 2 + b2, x2" = â 2e
a2+62 + a^h + bxe\ 

* Lie, Continuierliche Gruppen, pp. 192-197. 
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If this is equivalent to a transformation Tc of (?, we also 
have 

(7) < / = â 1 + c2, x2" = x2e
c* + c ^ . 

Therefore 

/ o x
 ci = a i + V " 2 s ?i(a> 6), 

c2 = a2 + b2 == $p2(a, &)• 

The C'B are finite for every finite system of values of the a's 
and &'s, but the transformation ThTa, or Te, may not be 
generated by an infinitesimal transformation of the group, 
as will appear later. 

In order to transform the finite equations 

( 1 ) « / = / i O l > '~9 *n> aV '"> O ( * = ! j 2> ""J n ) 

of the group into their canonical form, Lie proceeds as fol
lows.* By differentiation and elimination we obtain the 
differential equations 

O f r 

( i = l , 2, »., n ; 4 = 1 , 2 , - , r ) , 

which are satisfied identically by equations (1) above. 
Since the determinant of the <pJk 4= 0, these equations may 
be written in the form 

**(*/> "'7 O = ^MaV "•> ar) 3 ^ 

( i = l , 2 , - , n ; y = l , 2, - , r ) , 

where the determinant of the «^(a) =£ 0, and no linear re
lation of the form e^lt(x

f) + ••• +erÇH(xf) = 0, with constant 
coefficients e persists simultaneously for ^ = 1,2, —, n. The 
canonical form of the finite equations of the group can now 
be obtained by integration of the simultaneous system 

dxi = . . . ^ d< = d t 

* Transformationsgruppen, vol. 3, pp. 609-611. 
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that is to say, by integration of the simultaneous system 

§ ' = 2 / ^ K - , « , ) ^ (< = 1,2, •-.,»), 

subject to the condition that x! = x.(i = 1, 2, •», n) for t = 0. 
Consequently a1? •••, ar, considered as functions of t, satisfy 
the simultaneous system 

dn r 

(9) -^ = 2/Ma» -> <0 (* = 1 , 2> -. O-
Since x[ = a?,(t = 1> 2> '"> n) fort— 0, av •••, ar must assume 
the values a,0, —, ar° for # = 0, where ax°, —, ar° are the 
parameters which furnish the identical transformation. 
Integrating the simultaneous system (9) subject to the con
dition that ak = ak°(k = 1, 2, •••, r) for t = 0, we obtain the 
integrals 

aft = Jffc(V, - , *r0 ( & = 1 , 2, - , r ) , 

or, if we denote the parameters ^ , —, Art by //1? •••, firJ re
spectively, we have 

Inserting these values of av •••, ayin equations (1), we have 

*<'=/<(.*!* - , *», MM* - , ^ ) ) (*Œ 1, 2> '", n)> 

which are the canonical equations of the given group. 
Consider the application of this method to the finite equa

tions (4) on page 281. Since the equations 

Xl
f = x1 + a2 =Mx, a), 

x; = x2e
a* + a^ =ƒ,(», a) 

define co2 transformations Ta which constitute a group, 
functional equations persist of the form 

fXKx, a), b) =flx, 9(a, b)) (i = 1, 2) , 
or 
(10) ft(x', b) =ft(x, c) (*== 1, 2). 

The functions y>lf <p% in equations (8) are independent of 
one another with respect to b„ b,v for 

3 ^ |ér% 01 
dbt I o, i | 
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is not identically zero. Therefore we may regard xv x2, av 
av ev ca as independent variables, and a?/, #2\ a?/', x2", bv b2 
as dependent variables. Thus the differentiation of the 
functional equations (10), that is, of 

*t ' + K = Xl + C2> 

x2'e
b* + 6xe

62 » #2e
c2 + ete% 

with respect to the a's gives 

( i i ) 

In order to obtain expressions for ^-^ we differentiate equa

tions (8) with respect to av a2, and thus obtain 

ce 

3ax 
ea2 

<>->+£ 
0 = — fc^-0* 

0 = 
2 

+ ^ 

^ = - 1 . 

da2 

Inserting these values, equations (11) become 

(12) |< = 0, P-=l, P- = e% %L—>. v 3ax 3a2 3ax
 ? 3a2

 2 

These equations are of the form 

g £ - *"«(«, W * ' , 6) + ^ ( « , 6 ) * ^ , 6) 

( t = l , 2 ; 4 - 1 , 2 ) , 
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where 
r « ( a ' 6 ) " l ^ 0 '= i>2;*= i ,2 ) . 

Therefore 

vn=-e«>, ¥lt-bu y n - o , r 2 2 =- i , 

and, consequently, 

" l l U> *12 ~ - -1? ^21 X? ^22 X1 °V 

If we insert in equations (12) the values of #/, a?/ derived 
from 

(4) x2' = #2e
a2 + <*!?**, # / = xx + a2, 

they become equations between the independent quantities 
xv x.2, av a2, bv b2, and must therefore be satisfied identi
cally. Hence equations (12) will still persist identically in 
virtue of equations (4) if we assign definite values \ , \ to 
bv b2. For this purpose let bx = 1, and denote the functions 
#(a, b) and $(x', b) by <p(a) and £(#') respectively. Then 
we have 

(13) | | = ^(a)?M(a/) + 4>J*)*uV) 
(t = l , 2 ; 4 - 1 , 2 ) , 

where 

t — 0 £ 1 £ — — 1 Ë — r f 1 
^11 V> ^12 *? S21 x9 ^22 ^2 x9 

(h - s —. e a 2 . </; = s 1 . </» = O. (A = — 1 . 

The determinant of the <p9&9 namely 

K> 2̂2 0, - 1 

not being identically zero, equations (13) may be solved for 
the £'s, giving 

e*(*i'> *»') = <*/><» 3^ -+ «*(«) 9^-

( t - 1 , 2 ; i = l , 2 ) , 
where 

«u = - «""°2, «„ = 0, an = - e~a', an = - 1. 
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In order to obtain the system of functions ak = Mk(^v //2) 
(A; = 1, 2) which, when introduced into the finite equations 
(4) of the group, will transform these equations into fcheir 
canonical form, it is necessary to integrate the simultaneous 
system 

da 2 

subject to the condition that ak = ak° ( h = 1, 2) for t = 0, 
that is, we must integrate the simultaneous system 

subject to the condition that aY — a2 = 0 for t = 0. The in
tegrals of these equations are 

— ^ + v ( ^ . 1 ) S J f i ( V i ^ 

or, if we let nx = — (^ + X2)t, /^ = — kjt, 

<h = - J ( ^ 2 - 1) = ^ i ( ^ , AO> 
(14) / 2 

tt2 = ^ = M2^V !\)' 

Inserting these values, equations (4) become 

Xl = = Xl ' ^'2> 

X' = XJP* + ^ ( e ^ — 1), 
A * , 

which is the canonical form of the equations defining a 
transformation T^ of the group. These equations are of 
precisely the same form as the equations obtained by sum
mation of the series 

2 ^ [ 2 2 

where 

For every finite system of values of the M'S, the a's are 
finite. Consequently every transformation of the family 
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T^ belongs to the family Taf and is generated by an infini
tesimal transformation of the group. Since J^OO, -^iOO *n 

equations (14) are independent functions of the /^s, Lie as
sumes that every transformation of the family Ta belongs 
to the family T^. But although the functions a„ a2, defined 
by equations (14), are independent of the /^s since the Ja-
cobian 

is not identically zero, nevertheless for certain values of the 
a's the ^ s are infinite. Thus, solving equations (14), we 
have 

H = ^ É l = Nl(aV <*«)> I\ = a2 = ^ K , O ' 

For aj 4= 0 and a2 an even multiple of w \Z— 1, ^ becomes 
infinite, and this transformation of the family Ta is distinct 
from any transformation of the family Ta for which the A'S 
are finite. But infinite values of the /Vs are excluded from 
consideration, for nx = — (^ + X%)t, //2 = — X2t, and since £ 
cannot be infinite if i\ or //2 is infinite, ^ or X2 must be in
finite, and by supposition the A's are arbitrary but definite 
constants. Consequently we cannot assume that every 
transformation of the family Ta belongs to the family 2^. 

This necessitates a restriction upon the criterion for the 
continuity of a group. For a system of values of the a's 
for which one or both of the functions iV^a), N2(a) are 
infinite there is no equivalent transformation of the family 
2^, and consequently such a transformation Ta cannot be 
generated by an infinitesimal transformation of the group. 
For example, the transformation considered above, for 
which ax 4= 0, a2 = an even multiple of n \ / — 1, cannot be 
generated by an infinitesimal transformation of the group. 
Such a transformation is termed a singular transformation, 
and a group which contains a singular transformation is 
said to be discontinuous. 

A group is said to be continuous if it contains no singu
lar transformation. In other words, an r-parameter group 
is said to be continuous if the composition of two arbitrary 
transformations Ta and Tb of the group, generated by the 
infinitesimal transformations 

alXl + - + arXr, bxXx + - + brXr 



288 GREEN'S THEOREM IN ONE DIMENSION. [April, 

respectively, is equivalent to a transformation To of the 
group, generated by the infinitesimal transformation 

c i x i + - + crXv> 

with finite parameters cv •••, c, ; that is to say, if a system 
of finite values of the c's can be found to satisfy the sym
bolic equation Th Ta= Tc. On page 282 we saw that the 
composition of the two arbitrary transformations Ta and Tb 
of the family defined by equations (4) was equivalent to a 
transformation Tc of the family, with finite parameters c. 
But equations (4) were not in their canonical form, and 
therefore it did not necessarily follow that the transforma
tion Tc could be generated by an infinitesimal transforma
tion of the group, as shown above. Consequently, if the 
finite equations of a group are not in their canonical form, 
the condition that for every finite system of values of the 
a's and è 'sa finite system of the c's can be found to satisfy 
the symbolic equation Th Ta = Tc is a necessary but not a 
sufficient condition for the continuity of the group. 

UNIVERSITY OF CINCINNATI, 
December', 1901. 

SOME APPLICATIONS OF GKEEN'S THEOREM IN 
ONE DIMENSION. 

BY MR. OTTO DUNKEL. 

(Read before the American Mathematical Society, February 22, 1902.) 

GREEN'S theorem ordinarily has reference to Laplace's 
equation in either two or three dimensions. I t has been 
generalized however in the case of two dimensions by re
placing Laplace's equation by the general homogeneous 
linear differential equation of the second order. In the gen
eralized form the theorem relates not only to the given differ
ential equation, but also to its adjoint differential equation.* 
A further extension of the theorem is possible by considering 
a differential equation of the nth order in two or more inde
pendent variables, and its corresponding adjoint.f 

*Cf. Encyklopâdie, II, A. 7 c , p. 513. 
fCf. Darboux, Théorie des Surfaces, vol. 2, pp. 72, 74, for the case of 

two independent variables. 


