itself is commutative with every operator of G_{i}. Let H_{1} be the commutator subgroup. The group $\left\{H_{1}, G_{i}\right\}$ is of order $p_{1}^{\beta} p_{i}^{\alpha_{i}}$. This contains $p_{1}^{\gamma}(\gamma \leqq \beta)$ subgroups of order $p_{i}^{a_{i}}$, and therefore $p_{1}^{\gamma} \equiv 1\left(\bmod p_{i}\right)$. Hence if

$$
p_{1}^{\gamma} \equiv 1\left(\bmod p_{i}\right) \quad(0<\gamma \leqq \beta),
$$

every commutator is commutative with every operator of G_{i}. Then $A_{j}^{-1} A_{i} A_{j}=A_{i} t_{i}$, where A_{j} is any operator of

$$
G_{j} \quad(j=1,2, \cdots, n)
$$

and A_{i} is any operator of G_{i}; and $A_{j}^{-1} A_{i}^{p_{i}{ }_{i}} A_{j}=A_{i}^{p_{i}^{\beta_{i}}}$, where $p_{1}^{\beta_{i}}$ is the order of t_{i}. But $p_{1}^{\beta_{i}}$ is relatively prime to p_{i}. Therefore $A_{j}^{-1} A_{i} A_{j}=A_{i}$, and G is the direct product of the groups $G_{j}{ }^{u}$

Theorem. If a group G of order $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{n}^{\alpha_{n}}\left(p_{1}, p_{2}, \cdots, p\right.$. being distinct primes) has a commutator subgroup of order p_{1}^{β} and if p_{1}^{γ} 三 $1\left(\bmod p_{i}\right)(0<\gamma \leqq \beta),(i=2,3, \cdots n)$, then G is the direct product of groups of orders $p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \cdots, p_{n}^{\alpha_{n}}$ respectively.

Cornell University.
August, 1902.

NOTE ON IRREGULAR DETERMINANTS.

BY PROFESSOR L. I. HEWES.
In Gauss's table * of binary quadratic forms the two negative determinants -468 and -931 of the first thousand are classed as regular and their genera and classes given correctly. Perott \dagger has pointed out that these two determinants are irregular. The details of the classes of the original thirteen irregular determinants of Gauss have been worked out by Cayley \ddagger and on the following page are given the details, in his notation, for the properly primitive reduced forms of the two determinants added by Perott's investigation.

[^0]

Kingston, R. I., August, 1902.

[^0]: * C. F. Gauss, Werke, vol II, p 450.
 \dagger "Sur la formation des déterminants irreguliers," Crelle, vol. 59.
 \ddagger Cayley's Collected Papers, vol. 5, p. 141.

