INFINITESIMAL DEFORMATION OF THE SKEW HELICOID.

BY DR. L. P. EISENHART.
(Read before the American Mathematical Society, September 3, 1902.)
Consider the skew helicoid S, defined by the equations

$$
\begin{equation*}
x=u \cos v, \quad y=u \sin v, \quad z=a v \tag{1}
\end{equation*}
$$

We shall show that the problem of the infinitesimal deformation of this surface can be completely solved.

By direct calculation we find

$$
\begin{equation*}
E=\sum\left(\frac{\partial x}{\partial u}\right)^{2}=1, \quad F=\sum \frac{\partial x}{\partial u} \frac{\partial x}{\partial v}=0, \tag{2}
\end{equation*}
$$

$$
G=\sum\left(\frac{\partial x}{\partial v}\right)^{2}=u^{2}+a^{2},
$$

and

$$
\begin{equation*}
X, Y, Z=\frac{a \sin v,-a \cos v, u}{\sqrt{u^{2}+a^{2}}} \tag{3}
\end{equation*}
$$

where Y, X, Z denote the direction cosines of the normal. Again we find

$$
D=\sum X \frac{\partial^{2} x}{\partial u^{2}}=0, \quad D^{\prime}=\sum X \frac{\partial^{2} x}{\partial u \partial v}=\frac{-a}{\sqrt{u^{2}+a^{2}}},
$$

$$
\begin{equation*}
D^{\prime \prime}=\sum X \frac{\partial^{2} x}{\partial v^{2}}=0 . \tag{4}
\end{equation*}
$$

The characteristic equation of the deformation reduces in this case to

$$
\frac{\partial^{2} \phi}{\partial u \partial v}+\frac{u}{u^{2}+a^{2}} \frac{\partial \phi}{\partial v}=0
$$

of which the general integral is

$$
\begin{equation*}
\phi=\frac{U+V}{\sqrt{u^{2}+a^{2}}} \tag{5}
\end{equation*}
$$

where U is a function of u alone and V is a function of v alone.

The cartesian cöordinates of the surface S_{1}, corresponding to S with orthogonality of linear elements, have the following expressions:*

$$
\begin{align*}
& x_{1}=(U+V) \sin v-2 \int \sin v \cdot V^{\prime} d v \\
& y_{1}=-(U+V) \cos v+2 \int \cos v \cdot V^{\prime} d v \tag{6}\\
& z_{1}=-\frac{1}{a}\left[(U+V) u-2 \int u \cdot U^{\prime} d u\right]
\end{align*}
$$

where the accent denotes differentiation. From (6) we have that, when V is a constant, S_{1} is a surface of revolution. Moreover, since these formulæ involve an arbitrary function of u, it follows that any surface of revolution can be defined by them.

Conversely, given a surface of revolution defined by

$$
x=u \cos v, \quad y=u \sin v, \quad z=U
$$

the helicoid with plane director, whose equations are

$$
\bar{x}=U_{1} \sin v, \quad \bar{y}=-U_{1} \cos v, \quad \bar{z}=a v
$$

has the same axis and corresponds with orthogonality of linear elements, if

$$
U_{1}=a u \int \frac{U^{\prime}}{u^{2}} d u
$$

where the accent denotes differentiation with respect to u.
By direct calculation we find from (6),

$$
\begin{equation*}
F_{1}=\sum \frac{\partial x_{1}}{\partial u} \frac{\partial x_{1}}{\partial v}=\frac{V^{\prime}}{a^{2}}\left[u(U+V)-\left(u^{2}+a^{2}\right) U^{\prime}\right] \tag{7}
\end{equation*}
$$

From (4) we see that the lines $u=$ const., $v=$ const. on S are asymptotic, and consequently the corresponding lines on S_{1} form a conjugate system. Hence it follows from (7) that the necessary and sufficient condition that asymptotic lines on S cor-

[^0]respond to lines of curvature on S_{1} is that $V^{\prime}=0$, that is, S_{1} must be a surface of revolution.

From (5) we see that in the latter case ϕ is a function of u alone. This, however, is a general property of the infinitesimal deformation of minimal surfaces. For, from the following formula, which we have established elsewhere,*

$$
F_{1}=F \phi^{2}+\frac{1}{K^{2}\left(E G-F^{2}\right)}\left(D \frac{\partial \phi}{\partial v}-D^{\prime} \frac{\partial \phi}{\partial u}\right)\left(D^{\prime} \frac{\partial \phi}{\partial v}-D^{\prime \prime} \frac{\partial \phi}{\partial u}\right)
$$

it is seen that when S is a minimal surface referred to its asymptotic lines, the necessary and sufficient condition that the parametric lines on S_{1} be the lines of curvature is that ϕ shall be a function of u alone or a function of v alone.

When in particular we take

$$
\begin{equation*}
U=\sqrt{u^{2}+a^{2}}, \quad V=0 \tag{8}
\end{equation*}
$$

we get

$$
\begin{gathered}
x_{1}=\sqrt{u^{2}+a^{2}} \cdot \sin v, \quad y_{1}=-\sqrt{u^{2}+a^{2}} \cdot \cos v \\
z_{1}=-a \log \left(u+\sqrt{u^{2}+a^{2}}\right)
\end{gathered}
$$

which define the catenoid. From (5) we get $\phi=1$, which is the case whenever, in the deformation of a minimal surface, the adjoint of the latter is taken for the surface $S_{1} \cdot \dagger$

Genty \ddagger has shown that the cartesian coördinates, x_{0}, y_{0}, z_{0}, of the associate surface $\S S_{0}$ in an infinitesimal deformation are given by the equations

$$
\begin{aligned}
& d x_{1}=z_{0} d y-y_{0} d z \\
& d y_{1}=x_{0} d z-z_{0} d x, \\
& d z_{1}=y_{0} d x-x_{0} d y
\end{aligned}
$$

Substituting the expressions for x, y, \cdots, z_{1}, from (1) and (6), and solving we find

$$
\begin{align*}
& x_{0}=\frac{1}{a}\left[\left(U+V-u U^{\prime}\right) \sin v+V^{\prime} \cdot \cos v\right] \\
& y_{0}=\frac{1}{a}\left[-\left(U+V-u U^{\prime}\right) \cos v+V^{\prime} \cdot \sin v\right] \tag{9}\\
& z_{0}=U^{\prime}
\end{align*}
$$

[^1]The linear element of S_{0}^{\prime} is readily found to be

$$
\begin{equation*}
d s_{0}^{2}=\frac{U^{\prime \prime 2}}{a^{2}}\left(u^{2}+a^{2}\right) d u^{2}+\frac{1}{a^{2}}\left(V^{\prime \prime}+V-u U^{\prime}+U\right)^{2} d v^{2} \tag{10}
\end{equation*}
$$

It is well known that the lines upon any associate surface corresponding to the asymptotic lines on S form a conjugate system. From (10) we see that the conjugate system on S_{0} corresponding to asymptotic lines on S are the lines of curvature. Furthermore, the lines of curvature $v=$ const. are geodesics and consequently S_{0} is a surface of Monge.* From the form of the coefficient of $d v^{2}$ in (10) we have that the generating developable is a cylinder. \dagger Hence

In any infinitesimal deformation of a skew helicoid the associate surface is a moulure surface.

Conversely, given any moulure surface ; its equations can be put in the form (9) and then can be taken for the associate surface in the deformation of the helicoid (1), corresponding to the value $(U+V)\left(u^{2}+a^{2}\right)^{-1 / 2}$ of the characteristic function.

From (6) and (9) we get the
Theorem: When the surface S_{1} in an infinitesimal deformation of a skew helicoid is a surface of revolution, the associate surface S_{0} also is a surface of revolution, and their lines of curvature correspond.

And conversely,
When the associate surface S_{0} is a surface of revolution, the characteristic surface S_{1} is a surface of revolution.

When in particular S_{1} is the catenoid, S_{0} is the sphere of radius unity and center at the origin.

If we put

$$
U=a \sqrt{u^{2}+a^{2}}-a u \log \left(u+\sqrt{u^{2}+a^{2}}\right), \quad V=0
$$

the formulæ (9) define the catenoid. We have shown \ddagger that the necessary and sufficient condition that the lines of curvature be unaltered in the deformation of S is that S_{0} be the adjoint minimal surface of S. Hence, when

$$
\phi=a\left[1-\frac{u}{\sqrt{u^{2}+a^{2}}} \log \left(u+\sqrt{\left.u^{2}+a^{2}\right)}\right]\right.
$$

[^2]the corresponding deformation of S leaves the lines of curvature unaltered and only in this case.

Princeton,
June, 1902.

ON INTEGRABILITY BY QUADRATURES.

 BY DR. SAUL EPSTEEN.(Read before the American Mathematical Society, September 3, 1902.)
The object of this note is to show that Vessiot's noted theorem that: "the necessary and sufficient condition that a linear differential equation shall be integrable by quadratures is that its group of rationality shall be integrable," * is a special case of the Jordan-Beke \dagger theorem on reducibility of differential equations.

The Jordan-Beke theorem is to the effect that "if a linear differential equation is reducible in the sense of Frobenius \ddagger then its group of rationality will transform a certain linear manifoldness of the solutions (which does not include the total n-dimensional manifoldness) into itself."

Analytically interpreted \S this says that the group

```
    \(y_{1}=a_{11} y_{1}+\cdots+a_{1 k} y_{k c}\),
    \(y_{k}=a_{k 1} y_{1} \quad+\cdots+a_{k k} y_{k i}\),
\(y_{k+1}=a_{k+1,1} y_{1}+\cdots+a_{k+1, k} y_{k}+a_{k+1, k+1} y_{k+1}+\cdots+a_{k+1, n} y_{n}\),
\(y_{n}=a_{n 1} y_{1} \quad+\cdots+a_{n k} y_{k}+a_{n, k+1} y_{k+1}+\cdots+a_{n n} y_{n}\),
```

is isomorphic with the group of rationality. For convenience it is well to adopt Loewy's notation, writing for (1) simply the coefficients

[^3]
[^0]: * Bianchi, Lezioni, p. 276.

[^1]: * Amer. Jour. of Math., vol. 24, p. 177.
 \dagger lbid., p. 192.
 \ddagger Toulouse Annales, vol. 9.
 ${ }_{8}$ Bianchi, l. c., p. 279.

[^2]: * Monge, Applic. de l'Analyse a la Géométrie 5 ed., chap. 25.
 \dagger Darboux, Leçons, vol. 1, p. 105.
 \ddagger L. c., p. 199.

[^3]: * Vessiot : Ann. de l'Ec. nor. sup., 1892.
 \dagger C. Jordan. Bull. de la Soc. Math. de France, vol. 2; Beke: Math. Annalen, vol. 45, p. 279.
 \ddagger Frohenius: Crelle, vol. 76.

 3. A. Loewy : "Ueber die irreduciblen Factoren," etc., Berichte der math.phy. Classe der Königl. Sächs. Gesellschaft der Wissenschaften zu Leipzig, vol. 54 (1902), pp. 1-13.
