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1. L E T h{6) be any algebraic number field and P a prime 
ideal in k{6). Then we know that every algebraic integer, 
which is prime to P , satisfies the congruence 

(1) x^pï == 1, mod. P , 

where </>(P) = n(P) — 1, n(P) denoting the norm of P . The 
object of the present note is to determine the roots of the con
gruence 
(2) x^p) = 1, mod. Pn, 
for n > 1.* 

2. To determine the roots of (2) we introduce the function 
qn{a), defined in the following way. Suppose that a be a root of 

X<KP) s ^ m o d . p»} 

and let /*n be an algebraic integer, divisible by Pn and by no 
higher power of P . Then we can find an algebraic integer, 
which we denote by qn(a), such that 

(3) a*<*> ss 1 + /inqH(a)9 mod. P"+\ 
E o r i f 

«*(*> = 1 + 7T, 

where ir is divisible by Pn, we should have 

*• = * * . ? » , mod. P-+i, 
and 

(4) ^ B i 7 î . ( « ) , m o d . P , 

if 7 is an algebraic integer, prime to P , such that 77r//^n is an 

* F o r &(1) or the number field consisting of the rational numbers, see 
Bachmann : Niedere Zahlentheorie, p. 159. 
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integer. Since 7 is prime to P , the congruence (4) determines 
qn{oi) uniquely mod. P . The function qn, defined in this way, 
depends on \xn. But if fin and \x'n be two algebraic integers, 
divisible by Pn and by no higher power of P , and qn and q'n the 
corresponding functions q, then 

(5) /"»?»(«) s A*;?;(«), mod. P-+1. 

3. For the function qn(a) we can easily derive the following 
three properties : 

I . qn(afi) m qn(a) + qn(0), mod. P . 
I I . q(a)s*q (/3), mod. P , if a s /3, mod. Pn+1. 

I I I . ?n(a) == <£(/3) -0'8'irS/^ mod. P , if a = /3, mod. P \ 
Here IT = a — /3 and 8 is an algebraic integer, prime to P , such 
that 7r8/fjcn is an integer. /3' and £' are determined by /3/3' == 1, 
mod. P , and 8S' == 1, mod. P . 

The first two properties follow directly from the definition of 
qn(a). To prove the third property let a = ft + 77-. Then, 
since </>(P) =_p / — 1, _p being the rational prime divisible by 
P and ƒ the degree of P , we have 

(/3 + 7r)^p) = £*<*)_ / S ^ ^ - V , mod. P-+1, 

= £*(*>_ fi'P+Wir, mod. P ^ 1 , 

a 1 + finqn(P) - £ V , mod. P«+i, 
and hence 

M,?,(«) = /*A(/3) - /3V, mod. P»+», 

from which the third property follows directly. 
4. Now let a be a root of 

(6) ^ ( p ) ss 1, mod. Pn. 

Let /3 be any algebraic integer and P m the highest power 
of P , which will divide fi — a. Then, if we set ft = a + TT, 
in order that /3 should be a root of 

(7) a^p> == 1, mod. P*+ 1 

we must have 
(a + 7r)<Hp> 5 1, mod. P-+1, 

or 
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+ . . . + a'* (pV<p> s= 0, mod. P*+\ 

where aa = 1, mod. Pn. 
If m < w, all the terms in (8) would be divisible by P m , and 

hence </>(P) divisible by P , which is impossible. Hence we 
must have m = n. Then we get from (8) 

*" s a ^g n (a ) , mod. P-+1, 
and 
(9) 5 = « [ ! + /*.?,,(«)], mod. P-+1. 

I t is also easily seen that a [ l + fJb
nÇ7)H

a)~] *s a r o 0^ °^ C0> ^ 
a is a root of (6). Now let ^ and a2 be two roots of (6), in-
congruent mod. Pw . Then, if 

« i [ l + A*»?»(«i)] « «,[1 + **.?„(«,)], mod. P"+S 

we should have 

«i - «2 = ^[«aSnW - «i/*»?»(ai)L m o d ' Pn+1^ 

which is impossible, since ax — a2 is not divisible by Pn. 
Now by giving to n the values 1, 2, 3, • • • we thus see that 

all the roots of 
x^p) == 1, mod. Pw , 

are 
(10) ® ES a [ l + /*1?1(a)] • • • [1 + / V A - i ( a ) L mod. P*, 

where a runs through the roots of 

#*(JB) == 1, mod. P . 
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