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The extraordinary development of mathematics in the last 
century is quite unparalleled in the long history of this most 
ancient of sciences. Not only have those branches of mathemat
ics which were taken over from the eighteenth century steadily 
grown but entirely new ones have sprung up in almost be
wildering profusion, and many of these have promptly assumed 
proportions of vast extent. 

As it is obviously impossible to trace in the short time 
allotted to me the history of mathematics in the nineteenth 
century, even in merest outline, I shall restrict myself to the 
consideration of some of its leading theories. 

Theory of Functions of a Complex Variable. 

Without doubt one of the most characteristic features of 
mathematics in the last century is the systematic and universal 
use of the complex variable. Most of the great mathematical 
theories received invaluable aid from it, and many owe to it 
their very existence. What would the theory of differential 
equations or elliptic functions be to-day without it, and is it 
probable that Poncelet, Steiner, Chasles, and von Staudt would 
have developed synthetic geometry with such elegance and per
fection without its powerful stimulus ? 

The necessities of elementary algebra kept complex numbers 
persistently before the eyes of every mathematician. In the 
eighteenth century the more daring, as Euler and Lagrange,, 
used them sparingly ; in general one avoided them when possible. 
Three events, however, early in the nineteenth century changed 
the attitude of mathematicians toward this mysterious guest. In 
1813-14 Argand published his geometric interpretation of com
plex numbers. In 1824 came the discovery by Abel of the 
imaginary period of the elliptic function. Finally Gauss in his 
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second memoir on biquadratic residues (1832) proclaims them 
a legitimate and necessary element of analysis. 

The theory of functions of a complex variable may be said to 
have had its birth when Cauchy discovered his integral theorem 

r/(x)dx = 0, 

published in 1825. In a long series of publications beginning 
with the Cours d'analyse, 1821, Cauchy gradually developed 
his theory of functions and applied it to problems of the most 
diverse nature ; e. g., existence theorems for implicit functions 
and the solutions of certain differential equations, the develop
ment of functions in infinite series and products, and the 
periods of integrals of one-valued and many-valued functions. 

Meanwhile Germany is not idle ; Weierstrass and Kiemann 
develop Cauchy's theory along two distinct and original paths. 
Weierstrass starts with an explicit analytic expression, a 
power series, and defines his function as the totality of its 
analytical continuations. No appeal is made to geometric in
tuition, his entire theory is strictly arithmetical. Biemann, 
growing up under Gauss and Dirichlet, not only relies largely 
on geometric intuition, but also does not hesitate to impress 
mathematical physics into his service. Two noteworthy features 
of his theory are the many-leaved surfaces named after him, 
and the extensive use of conformai representation. 

The history of functions as first developed is largely a the
ory of algebraic functions and their integrals. A general the
ory of functions is only slowly evolved. For a long time the 
methods of Cauchy, Eiemann, and Weierstrass were cultivated 
along distinct lines by their respective pupils. The schools of 
Cauchy and Biemann were the first to coalesce. The entire rigor 
which has recently been imparted to their methods has removed 
all reason for founding, as Weierstrass and his school have urged, 
the theory of functions on a single algorithm, viz., the power 
series. We may therefore say that at the close of the century 
there is only one theory of functions, in which the ideas of its 
three great creators are harmoniously united. 

Let us note briefly some of its lines of advance. Weierstrass 
early observed that an analytic expression might represent dif
ferent analytic functions in different regions. Associated with 
this is the phenomenon of natural boundaries. The question 
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therefore arose as to what is the most general domain of defini
tion of an analytic function. Runge has shown that any con
nected region may serve this purpose. An important line of 
investigation relates to the analytic expression of a function by 
means of infinite series, products, and fractions. Here may be 
mentioned Weierstrass's discovery of prime factors ; the theorems 
of Mittag-LefHer and Hubert ; Poincaré's uniformization of 
algebraic and analytic functions by means of a third variable, 
and the work of Stieltjes, Pincherle, Padé, and Van Vleck on 
infinite fractions. 

Since an analytic function is determined by a single power 
series, which in general has a finite circle of convergence, two 
problems present themselves : to determine 1) the singular 
points of the analytic function so defined, and 2) an analytic ex
pression valid for its whole domain of definition. The cele
brated memoir of Hadamard inaugurated a long series of in
vestigations on the first problem ; while Mittag-Leffler's star 
theorem is the most important result yet obtained relating to 
the second. 

Another line of investigation relates to the work of Poincaré, 
Borel, Stieltjes, and others on divergent series. I t is indeed a 
strange vicissitude of our science that these series, which early 
in the century were supposed to be banished once and for all 
from rigorous mathematics, should at its close be knocking at 
the door for readmission. 

Let us finally note an important series of memoirs on in
tegral transcendental functions beginning with Weierstrass, 
Laguerre, and Poincaré. 

Algebraic Fundions and Their Integrals. 

A branch of the theory of functions has been developed to 
such an extent that it may be regarded as an independent 
theory, we mean the theory of algebraic functions and their in
tegrals. The brilliant discoveries of Abel and Jacobi in the 
elliptic functions from 1824 to 1829 prepared the way for a 
similar treatment of the hyperelliptic case. Here a difficulty 
of gravest nature was met. The corresponding integrals have 
2p linearly independent periods ; but, as Jacobi had shown, a 
one-valued function having more than two periods admits a 
period as small as we choose. I t therefore looked as if the 
elliptic functions admitted no further generalization. Guided 
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by AbePs theorem, Jacobi at last discovered the solution to the 
difficulty, 1832 ; to get functions analogous to the elliptic 
functions we must consider functions not of one but of p inde
pendent variables, viz., the p independent integrals of the first 
species. The great problem now before mathematicians, known 
as Jacobi's problem of inversion, was to extend this aperçu to 
the case of any algebraic configuration and develop the conse
quences. The first to take up this immense task were Weier-
strass and Riemann, whose results belong to the most brilliant 
achievements of the century. Among the important notions 
hereby introduced we note the following : the birational trans
formation, rank of an algebraic configuration, class invariants, 
prime functions, the theta and multiply periodic functions in 
several variables. Of great importance is Riemann's method 
of proving existence theorems as also his representation of 
algebraic functions by means of integrals of the second species. 

A new direction was given to research in this field by Clebsch, 
who considered the fundamental algebraic configuration as de
fining a curve. His aim was to bring about a union of Rie-
mann\s ideas and the theory of algebraic curves for their mutual 
benefit. Clebsch's labors were continued by Brill and Noether ; 
in their work the transcendental methods of Riemann are placed 
quite in the background. More recently Klein and his school 
have sought to unite the transcendental methods of Riemann 
with the geometric direction begun by Clebsch, making syste
matic use of homogeneous coordinates and the invariant theory. 
Noteworthy also is Klein's use of normal curves in (p — l)-way 
space to represent the given algebraic configuration. Dedekind 
and Weber, Hensel and Landsberg have made use of the ideal 
theory with marked success. Many of the difficulties of the 
older theory, for example the resolution of singularities of the 
algebraic configuration, are treated with a truly remarkable ease 
and generality. 

In the theory of multiply periodic functions and the general 6 
functions we mention, besides those of Weierstrass, the researches 
of Prym, Krazer, Frobenius, Poincaré, and Wirtinger. 

Automorphio Functions. 

Closely connected with the elliptic functions is a class of 
functions which has come into great prominence in the last 
quarter of a century, viz. : the elliptic modular and automorphic 
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functions. Let us consider first the modular functions of 
which the modulus fc and the absolute invariant J are the 
simplest types. 

The transformation theory of Jacobi gave algebraic relations 
between such functions in endless number. Hermite, Fuchs, 
Dedekind and Schwarz are forerunners, but the theory of 
modular functions as it stands to-day is principally due to Klein 
and his school. Its goal is briefly stated thus : To determine all 
subgroups of the linear group 

where a, /3,7, S are integers and aè — /3<y 4= 0 ; to determine for 
each such group associate modular functions and to investigate 
their relation to one another and especially to J. Important 
features in this theory are the congruence groups of (1); the 
fundamental polygon belonging to a given subgroup, and its 
use as substitute for a Riemann surface ; the principle of re
flection on a circle ; the modular forms. 

The theory of automorphic functions is due to Klein and 
Poincaré. I t is a generalization of the modular functions ; the 
coefficients in (1) being any real or imaginary numbers, with 
non-vanishing determinant, such that the group is discontinuous. 
Both authors have recourse to non-euclidean geometry to in
terpret the substitutions (1). Their manner of showing the ex
istence of functions belonging to a given group is quite different. 
Poincaré by a brilliant stroke of genius actually writes down 
their arithmetic expressions in terms of his celebrated 0 series. 
Klein employs the existence methods of Riemann. The rela
tion of automorphic functions to differential equations is studied 
by Poincaré in detail. In particular, he shows that both 
variables of a linear differential equation with algebraic coef
ficients can be expressed uniformly by their means. 

Differential Equations. 

Let us turn now to another great field of mathematical activ
ity, the theory of differential equations. The introduction of 
the theory of functions has completely revolutionized this sub
ject. At the beginning of the nineteenth century many im
portant results had indeed been established, particularly by 
Eu 1er and Lagrange ; but the methods employed were artificial, 
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and broad comprehensive principles were lacking. By various 
devices one tried to express the solution in terms of the ele
mentary functions and quadratures — a vain attempt; for, as 
we know now, the goal they strove so laboriously to reach was 
in general unattainable. 

A new epoch began with Cauchy, who by means of his new 
theory of functions first rigorously established the existence of 
the solution of certain classes of equations in the vicinity of 
regular points. He also showed that many of the properties of 
the elliptic functions might be deduced directly from their dif
ferential equations. Ere long, the problem of integrating a 
differential equation changed its base. Instead of seeking to 
express its solution in terms of the elementary functions and 
quadratures, one asked what is the nature of the functions 
defined by a given equation. To answer this question we must 
first know what are the singular points of the integral function 
and how it behaves in their vicinity. The number of memoirs 
on this fundamental and often difficult question is enormous ; 
but this is not strange if we consider the great variety of 
interesting and important classes of equations which have to 
be studied. 

One of the first to open up this new path was Fuchs, whose 
classic memoirs (1866-68) gave the theory of linear differential 
equations its birth. These equations enjoy a property which 
renders them particularly accessible, viz., the absence of movable 
singular points. They may, however, possess points of indéter
mination, to use Fuchs's terminology, and little progress has been 
made in this case. Noteworthy in this connection is the intro
duction by von Koch of infinite determinants, whose importance 
was first shown by our distinguished countryman, Hill ; also the 
use of divergent series — that invention of the devil, as Abel 
called them — by Poincaré. A particular class of linear differen
tial equations of great importance is the hypergeometric equation ; 
the results obtained by Gauss, Kummer, Riemann, and Schwarz 
relating to this equation have had the greatest influence on the 
development of the general theory. The great extent of the 
theory of linear differential equations may be estimated when 
we recall that within its borders it embraces not only almost 
all the elementary functions, but also the modular and auto-
morphic functions. 

Too important to pass over in silence is the subject of alge
braic differential equations with uniform solutions. The bril
liant researches of Painlevé deserve especial mention. 
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Another field of great importance, especially in mathematical 
physics, relates to the determination of the solution of differen
tial equations with assigned boundary conditions. The litera
ture of this subject is enormous ; we may therefore be pardoned 
if mention is made only of the investigations of Green, Sturm, 
Liouville, Bôcher, Riemann, Schwarz, C. Neumann, Poincaré, 
and Picard. 

Since 1870 the theory of differential equations has been 
greatly advanced by Lie's theory of groups. Assuming that 
an equation or a system of equations admits one or more infin
itesimal transformations, Lie has shown how these may be em
ployed to simplify the problem of integration. In many cases 
they give us exact information how to conduct the solution and 
upon what system of auxiliary equations the solution depends. 
One of the most striking illustrations of this is the theory of 
ordinary linear differential equations which Picard and Vessiot 
have developed, analogous to Galois's theory for algebraic equa
tions. An interesting result of this theory is a criterion for the 
solution of such equations by quadratures. As an application 
we find that Riccati's equation cannot be solved by quadratures. 
The attempts to effect s.uch a solution of this celebrated equa
tion in the preceding century were therefore necessarily in vain. 

A characteristic feature of Lie's theories is the prominence 
given to the geometrical aspects of the questions involved. 
Lie thinks in geometrical images, the analytical formulation 
comes afterwards. Already Monge had shown how much 
might be gained by geometrizing the problem of integration. 
Lie has gone much farther in this direction. Besides employing 
all the geometrical notions of his predecessors extended to n-way 
space, he has introduced a variety of new conceptions, chief of 
which are his surface element and contact transformations. 

He has also used with great effect Plücker's line geometry and 
his own sphere geometry in the study of certain types of partial 
differential equations of the first and second orders which are of 
great geometrical interest, for example equations whose char
acteristic curves are lines of curvature, geodesies, etc. Let us 
close by remarking that Lie's theories not only afford new and 
valuable points of view for attacking old problems but also give 
rise to a host of new ones of great interest and importance. 

Groups. 

We turn now to the second dominant idea of the century, 
the group concept. 
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Groups first became objects of study in algebra when La
grange 1770, EufiBni 1799, and Abel 1826 employed substitu
tion groups with great advantage to their work on the quintic. 
The enormous importance of groups in algebra was, however, 
first made clear by Galois, whose theory of the solution of 
algebraic equations is one of the great achievements of the 
century. Its influence has stretched far beyond the narrow 
bounds of algebra. 

With an arbitrary but fixed domain of rationality, Galois 
observed that every algebraic equation has attached to it a 
certain group of substitutions. The nature of the auxiliary 
equations required to solve the given equation is completely 
revealed by an inspection of this group. 

Galois's theory showed the importance of determining the 
sub-groups of a given substitution group, and this problem was 
studied by Cauchy, Serret, Mathieu, Kirkman and others. 
The publication of Jordan's great treatise in 1870 is a note
worthy event. I t collects and unifies the results of his prede
cessors and contains an immense amount of new matter. 

A new direction was given to the theory of groups by the 
introduction by Cayley of abstract groups (1854, 1878). The 
work of Sylow, Holder, Frobenius, Burnside, Cole, and Miller 
deserves especial notice. 

Another line of researches relates to the determination of the 
finite groups in the linear group of any number of variables. 
These groups are important in the theory of linear differential 
equations with algebraic solutions ; in the study of certain 
geometrical problems, as the points of inflection of a cubic, the 
27 lines on a surface of the third order; in crystallography, 
etc. They also enter prominently in Klein's Formenproblenu 
An especially important class of finite linear groups are the 
congruence groups first considered by Galois. Among the 
laborers in the field of linear groups we note Jordan, Klein, 
Moore, Maschke, Dickson, Frobenius, and Wiman. 

Up to the present we have considered only groups of finite 
order. About 1870 entirely new ideas, coming from geometry 
and differential equations, give the theory of groups an unex
pected development. Foremost in this field are Lie and Klein. 

Lie discovers and gradually perfects his theory of continuous 
transformation groups and shows their relations to many dif
ferent branches of mathematics. In 1872 Klein publishes his 
Erlanger Programm and in 1877 begins his investigations on 



1 4 4 MATHEMATICS IN THE NINETEENTH CENTURY. [ D e c , 

elliptic modular functions, in which infinite discontinuous groups 
are of primary importance, as we have already seen. In the 
now famous Erlanger Programm, Klein asks what is the prin
ciple which underlies and unifies the heterogeneous geometric 
methods then in vogue, as for example, the geometry of the 
ancients whose figures are rigid and invariable, the modern 
projective geometry, whose figures are in ceaseless flux, pass
ing from one form to another, the geometries of Plücker and 
Lie in which the elements of space are no longer points but 
lines, spheres, or other configurations at pleasure, the geometry 
of birational transformations, the analysis situs, etc., etc. Klein 
finds this answer : In each geometry we have a system of 
objects and a group which transforms these objects one into 
another. We seek the invariants of this group. In each case 
it is the abstract group which is essential, and not the concrete 
objects. The fundamental role of a group in geometrical re
search is thus made obvious. Its importance in the solution 
of algebraic equation, in the theory of differential equations, in 
the automorphic functions we have already seen. The immense 
theory of algebraic invariants developed by Cay ley and Syl
vester, Aronhold, Clebsch, Gordan, Hermite, Brioschi, and a 
host of zealous workers in the middle of the century, also finds 
its place in the far more general invariant theory of Lie's 
theory of groups. The same is true of the theory of surfaces 
as far as it rests on the theory of differential forms. In the 
theory of numbers, groups have many important applications, 
for example, in the composition of quadratic forms and the 
cyclotomic bodies. Finally let us note the relation between hy
percomplex numbers and continuous groups discovered by 
Poincaré. 

In resumé, we may thus say that the group concept, hardly 
noticeable at the beginning of the century, has at its close 
become one of the fundamental and most fruitful notions in the 
whole range of our science. 

Infinite Aggregates. 

Leaving the subject of groups, we consider now briefly another 
fundamental concept, viz., infinite aggregates. In the most 
diverse mathematical investigations we are confronted with such 
aggregates. In geometry the conceptions of a curve, surface, 
regon, frontier, etc., when examined carefully, lead us to a rich 
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variety of aggregates. In analysis they also appear, for ex
ample the domain of definition of an analytical function, the 
points where a function of a real variable ceases to be continuous 
or to have a differential coefficient, the points where a series of 
functions ceases to be uniformly convergent, etc. 

To say that an aggregate (not necessarily a point aggregate) is 
infinite is often an important step ; but often again only the 
first step. To penetrate farther into the problem may require 
us to state how infinite. This requires us to make distinctions 
in infinite aggregates, to discover fruitful principles of classifi
cation, and to investigate the properties of such classes. 

The honor of having done this belongs to Georg Cantor. 
The theory of aggregates is for the most part his creation ; it 
has enriched mathematical science with fundamental and far 
reaching notions and results. 

The theory falls into two parts ; a theory of aggregates in 
general, and a theory of point aggregates. In the theory of 
point aggregates the notion of limiting points gives rise to im
portant classes of aggregates, as discrete, dense, complete, per
fect, connected, etc., which are so important in the function 
theory. 

In the general theory two notions are especially important, 
viz. : the one-to-one correspondence of the elements of two 
aggregates, and well ordered aggregates. The first leads to 
cardinal numbers and the idea of enumerable aggregates, the 
second to transfinite or ordinal numbers. 

Two striking results of Cantor's theory may be mentioned : 
the algebraic and therefore the rational numbers, although 
everywhere dense, are enumerable ; and secondly, one-way and 
w-way space have the same cardinal number. 

Cantor's theory has already found many applications, especi
ally in the function theory, where it is today an indispensable 
instrument of research. 

Functions of Real Variables. The Critical Movement 

One of the most conspicuous and distinctive features of 
mathematical thought in the nineteenth century is its critical 
spirit. Beginning with the calculus, it soon permeates all analy
sis, and toward the close of the century it overhauls and re
casts the foundations of geometry and aspires to further con
quests in mechanics and in the immense domains of mathematical 
physics. 
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Ushered in with Lagrange and Gauss just at the close of the 
eighteenth century, the critical movement receives its first deci
sive impulse from the teachings of Cauchy, who in particular 
introduces our modern definition of limit and makes it the 
foundation of the calculus. We must also mention in this con
nection Abel, Bolzano, and Dirichlet. Especially Abel adopted 
the reform ideas of Cauchy with enthusiasm and made impor
tant contributions in infinite series. 

The figure, however, which towers above all others in this 
movement,whose name has become a synonym of rigor, is Weier-
strass. Beginning at the very foundations, he creates an 
arithmetic of real and complex numbers, assuming the theory 
of positive integers to be given. The necessity of this is mani
fest when we recall that until then the simplest properties of 
radicals and logarithms were utterly devoid of a rigorous 
foundation ; so for example x/2 \ / 5 = s/ÏÖ> l°g 2 + log 5 
= log 10. 

Characteristic of the pre-Weierstrassian era is the loose way 
in which geometrical and other intuitional ideas were employed 
in the demonstration of analytic theorems. Even Gauss is 
open to this criticism. The mathematical world received a 
great shock when Weierstrass showed them an example of a 
continuous function without a derivative, and Hankel and 
Cantor by means of their principle of condensation of singu
larities could construct analytical expressions for functions 
having in any interval, however small, an infinity of points of 
oscillation, an infinity of points in which the differential coef
ficient is altogether indeterminate, or an infinity of points of 
discontinuity. Another rude surprise was Cantor's discovery 
of the one-to-one correspondence between the points of a unit 
segment and a unit square, followed up by Peano's example of a 
space filling curve. 

These examples and many others made it very clear that the 
idea of a curve, a surface region, motion, etc., instead of being 
clear and simple, were extremely vague and complex. Until 
these notions had been cleared up, their admission in the de
monstration of an analytical theorem was therefore not to be 
tolerated. On a purely arithmetical basis, with no appeal to our 
intuition, Weierstrass develops his stately theory of functions, 
which culminates in the theory of abelian and multiply peri
odic functions. 

But the notion of rigor is relative and depends on what we are 
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willing to assume either tacitly or explicitly. As we observed, 
Gauss, whose rigor was the admiration of his contemporaries, 
freely admitted geometrical notions. This Weierstrass would 
criticise. On the other hand Weierstrass has committed a grave 
oversight : he nowhere shows that his definitions relative to the 
numbers he introduces do not involve mutual contradictions. 
If he replied that such contradictions would involve contradic
tions in the theory of positive integers, one might ask what 
assurance have we that such contradictions may not actually 
exist ? A flourishing young school of mathematical logic has 
recently grown up in Italy under the influence of Peano. They 
have investigated with marked success the foundations of analy
sis and geometry, and have in particular endeavored to show the 
non-con tradictoriness of the axioms of our number system by 
making them depend on the axioms of logic, which axioms we 
must admit in order to reason at all. 

The critical spirit which in the first half of the century was 
to be found in the writings of only a few of the foremost mathe
maticians has in the last quarter of the century become almost 
universal, at least in analysis. A searching examination of the 
foundations of arithmetic and the calculus has brought to light 
the insufficiency of much of the reasoning formerly considered 
as conclusive. I t became necessary to build up these subjects 
anew. The theory of irrational numbers invented by Weier
strass has been supplanted by the more flexible theories of 
Dedekind and Cantor. Stolz has given us a systematic and 
rigorous treatment of arithmetic. The calculus has been com
pletely overhauled and arithmetized by Thomae, Harnack, 
Peano, Stolz, Jordan, and Vallée-Poussin. 

Leaving the calculus, let us notice briefly the theory of func
tions of real variables. The line of demarcation between these 
two subjects is extremely arbitrary. We might properly place 
in the latter all those finer and deeper questions relating to the 
number system, the study of the curve, surface, and other 
geometrical notions, the peculiarities that functions present with 
reference to discontinuity, oscillation, differentiation, and inte
gration, as well as a very extensive class of investigations 
whose object is the greatest possible extension of the processes, 
concepts, and results of the calculus. Among the many not 
yet mentioned who have made important contributions to this 
subject we note : Fourier, Eiemann, Stokes, Dini, Tannery, 
Pringsheim, Arzelà, Osgood, Brodén, Ascoli, Borel, Baire, 
Kopeke, Holder, Volterra, and Lebesgue. 
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Closely related with the differential calculus is the calculus 
of variations ; in the former the variables are given infinitesi
mal variations, in the latter the functions. Developed in a 
purely formal manner by Jacobi, Hamilton, Clebsch and others 
in the first part of the century, a new epoch began with Weier-
strass who, having subjected the labors of his predecessors to an 
annihilating criticism, placed the theory on a new and secure 
foundation, and so opened the path for further research by 
Schwarz, A. Mayer, Scheeffer, von Escherich, Kneser, Osgood, 
Bolza, Kobb, Zermelo and others. At the very close of the 
century Hubert has given the theory a fresh impulse by the 
introduction of new and powerful methods which enable us in 
certain cases to neglect the second variation and to simplify the 
consideration of the first. 

Theory of Numbers. Algebraic Bodies. 

The theory of numbers as left by Fermât, Euler and Legen-
dre was for the most part concerned with the solution of dio
phantine equations, i. e., given an equation f(x, y, z, • • •) = 0, 
whose coefficients are integers, to find all rational, and especially 
all integral solutions. In this problem Lagrange had shown 
the importance of considering the theory of forms. A new era 
begins with the appearance of Gauss's Disquisitiones Arith
metics in 1801. This great work is remarkable for three 
things; 1) The notion of divisibility in the form of congru
ences is shown to be an instrument of wonderful power ; 2) 
the diophantine problem is thrown in the background and the 
theory of forms is given a dominant role ; 3) the introduction 
of algebraic numbers, viz., the roots of unity. 

The theory of forms has been further developed along the 
lines of the Disquisitiones by Dirichlet, Eisenstein, Hermite, H. 
J . S. Smith, and Minkowski. 

Another part of the theory of numbers also goes back to 
Gauss, viz., algebraic numerical bodies. The law of reci
procity of quadratic residues, one of the gems of the higher 
arithmetic, was first rigorously proved by Gauss. His attempts 
to extend this theorem to cubic and biquadratic residues showed 
that the elegant simplicity which prevailed in quadratic res
idues was altogether missing in these higher residues until one 
passed from the domain of real integers to the domain formed 
of the third and fourth roots of unity. In these domains, as 
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Gauss remarked, algebraic integers have essentially the same 
properties as ordinary integers. Further exploration in this 
new and promising field by Jacobi, Eisenstein, and others soon 
brought to light the fact that already in the domain formed of 
the 23d roots of unity the laws of divisibility were altogether 
different from those of ordinary integers ; in particular a num
ber could be expressed as the product of prime factors in more 
than one way. Further progress in this direction was therefore 
apparently impossible. 

I t is Kumraer's immortal achievement to have made further 
progress possible by the invention of his ideals. These he 
applied to Fermâtes celebrated last theorem and the law of 
reciprocity of higher residues. 

The next step in this direction was taken by Dedekind and 
Kronecker, who developed the ideal theory for any algebraic 
domain. So arose the theory of algebraic numerical bodies 
which has come into such prominence in the last decades of the 
century through the researches of Hensel, Hurwitz, Minkow
ski, Weber, and above all Hubert. 

Kronecker has gone farther ; in his classic Grundziige he 
has shown that similar ideas and methods enable us to develop 
a theory of algebraic bodies in any number of variables. The 
notion of divisibility, so important in the preceding theories, is 
generalized by Kronecker still farther in the shape of his 
system of moduli. 

Another noteworthy field of research opened up by Kro
necker is the relation between binary quadratic forms with 
negative determinant and complex multiplication of elliptic 
functions. H. J . S. Smith, Gierster, Hurwitz, and especially 
Weber have made important contributions. 

A method of great power in certain investigations has been 
created by Minkowski which he calls the Geometrie der Zah-
len. Introducing a generalization of the distance function, he 
is led to the conception of a fundamental body (Aichkörper). 
Minkowski shows that every fundamental body is nowhere 
concave and conversely to each such body belongs a distance 
function. A theorem of great importance is now the follow
ing : The minimum value which each distance function has at 
the lattice points is not greater than a certain number depend
ing on the function chosen. 

We wish finally to mention a line of investigation which 
makes use of the infinitesimal calculus and even the theory of 
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functions. Here belong the brilliant researches of Dirichlet re
lating to the number of classes of binary forms for a given de
terminant, the number of primes in a given arithmetic pro
gression ; and Biemann's remarkable memoir on the number of 
primes in a given interval. 

On this analytical side of the theory of numbers we notice 
also the researches of Mertens, Weber, von Mangoldt, and 
Hadamard. 

Projective Geometry. 

The tendencies of the eighteenth century were predominantly 
analytic. Mathematicians were absorbed for the most part 
in developing the wonderful instrument of the calculus with 
its countless applications. Geometry made relatively little 
progress. A new era begins with Monge. His numerous and 
valuable contributions to analytic, descriptive, and differential 
geometry and especially his brilliant and inspiring lectures at 
the Ecole polytechnique (1795-1809) put fresh life in geom
etry and prepared it for a new and glorious development in the 
nineteenth century. 

When one passes in review the great achievements which 
have made the nineteenth century memorable in the annals of 
our science, certainly projective geometry will occupy a fore
most place. Pascal, De la Hire, Monge, and Carnot are fore
runners, but Poncelet, a pupil of Monge, is its real creator. 
The appearance of his Traité des propriétés projectives des 
figures in 1822 gives modern geometry its birth. In it we 
find the line at infinity, the introduction of imaginaries, the 
circular points at infinity, polar reciprocation, a discussion of 
homology, the systematic use of projection, section, and aii-
harmonic ratio. 

While the countrymen of Poncelet, especially Chasles, do 
not fail to make numerous and Valuable contributions to the 
new geometry, the next great steps in advance are made on 
German soil. In 1827 Möbius publishes the Barycentrische 
Calcul ; Plücker's Analytisch-geometrische Entwickelungen ap
pears in 1828-31; and Steiner's Systematische Entwickelung 
der Abhângigkeit geometrischer Gestalten von einander in 1832. 
In the ten years which embrace the publication of these im
mortal works of Poncelet, Plücker, and Steiner, geometry has 
made more real progress than in the 2,000 years which had 
elapsed since the time of Apollonius. The ideas which had 
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been slowly taking shape since the time of Descartes suddenly 
crystallized and almost overwhelmed geometry with an abun
dance of new ideas and principles. 

To Möbius we owe the introduction of homogeneous coordi
nates, and the far reaching conception of geometric transforma* 
tion including collineation and duality as special cases. To 
Plücker we owe the use of the abbreviated notation which per
mits us to study the properties of geometric figures without 
intervention of the coordinates, the introduction of line and 
plane coordinates and the notion of generalized space elements. 
Steiner, who has been called the greatest geometer since Ap
ollonius, besides enriching geometry in countless ways, was the 
first to employ systematically the method of generating geomet
ric figures by means of projective pencils. 

Other noteworthy works belonging to this period are Plücker's 
System der analytischen Geometrie (1835) and Chasles's classic 
Aperçu (1887). 

Already at this stage we notice a bifurcation in geometric 
methods. Steiner and Chasles become eloquent champions of 
the synthetic school of geometry, while Plücker and later Hesse 
and Cayley are leaders in the analytic movement. The as
tonishing fruitfulness and beauty of synthetic methods threat
ened for a short time to drive the analytic school out of exis
tence. The tendency of the synthetic school was to banish 
more and more metrical methods. In effecting this the anhar-
monic ratio became constantly more prominent. To define 
this fundamental ratio without reference to measurement and so 
to free projective geometry from the galling bondage of metric 
relations was thus a problem of fundamental importance. The 
glory of this achievement, which has, as we shall see, a far 
wider significance, belongs to von Staudt. Another equally 
important contribution of von Staudt to synthetic geometry 
is his theory of imaginaries. Poncelet, Steiner, Chasles operate 
with imaginary elements as if they were real. Their only justi
fication is recourse to the so-called principle of continuity or 
to some other equally vague principle. Von Staudt gives this 
theory a rigorous foundation, defining the imaginary points, 
lines and planes by means of involutions without ordinal ele
ments. 

The next great advance made is the advent of the theory of 
algebraic invariants. Since projective geometry is the study 
of those properties of geometric figures which remain unaltered 
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by projective transformations, and since the theory of invariants 
is the study of those forms which remain unaltered (except 
possibly for a numerical factor) by the group of linear substi
tutions, these two subjects are inseparably related and in many 
respects only different aspects of the same thing. I t is no 
wonder then that geometers speedily applied the new theory of 
invariants to geometrical problems. Among the pioneers in this 
direction were Cayley, Salmon, Aronhold, Hesse, and especially 
Clebsch. 

Finally we must mention the introduction of the line as a 
space element. Forerunners are Grassmann, 1844, and Cayley, 
1859, but Pliicker in his memoirs of 1865 and his work Neue 
Geometrie des Raumes (1868-69), was the first to show its great 
value by studying complexes of the first and second order and 
calling attention to their application to mechanics and optics. 

The most important advance over Pliicker has been made by 
Klein who takes as coordinates six line complexes in involution. 
Klein also observed that line geometry may be regarded as 
a point geometry on a quadric in five-way space. Other labor
ers in this field are Clebsch, Reye, Study, Segre, Sturm, and 
Koenigs. 

Differential Geometry. 

During the first quarter of the century this important branch 
of geometry was cultivated chiefly by the French. Monge and 
his school study with great success the generation of surfaces 
in various ways, the properties of envelopes, evolutes, lines of 
curvature, asymptotic lines, skew curves, orthogonal systems, 
and especially the relation between the surface theory and par
tial differential equations. 

The appearance of Gauss's Disquisitiones generales circa su
perficies curvas in 1828 marks a new epoch. Its wealth of new 
ideas has furnished material for countless memoirs and given 
geometry a new direction. We find here the parametric re
presentation of a surface, the introduction of curvilinear coor
dinates, the notion of spherical image, the gaussian measure of 
curvature, and a study of geodesies. But by far the most im
portant contributions that Gauss makes in this work are the con
sideration of a surface as a flexible inextensible film or mem
brane and the importance given quadratic differential forms. 

We consider now some of the lines along which differential 
geometry has advanced. The most important is perhaps the 
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theory of differential quadratic forms with their associate in
variants and parameters. We mention here Lamé, Beltrami, 
Mainardi, Codazzi, Christoffel, Weingarten, and Maschke. 

An especially beautiful application of this theory is the 
immense subject of applicability and deformation of surfaces in 
which Minding, Bauer, Beltrami, Weingarten, and "Voss have 
made important contributions. 

Intimately related with the theory of applicability of two 
surfaces is the theory of surfaces of constant curvature which 
play so important a part in non-euclidean geometry. We 
mention here the work of Minding, Bonnet, Beltrami, Dini, 
Backlund, and Lie. 

The theory of rectilinear congruences has also been the 
subject of important researches from the standpoint of differen
tial geometry. First studied by Monge as a system of normals 
to a surface and then in connection with optics by Malus, 
Dupin, and Hamilton, the general theory has since been de
veloped by Kummer, fiibaucour, Guichard, Darboux, Voss, 
and Weingarten. An important application of this theory is 
the infinitesimal deformation of a surface. 

Minimum surfaces have been studied by Monge, Bonnet and 
Enneper. The subject owes its present extensive development 
principally to Weierstrass, Riemann, Schwarz, and Lie. In it 
we find harmoniously united the theory of surfaces, the theory 
of functions, the calculus of variations, the theory of groups, 
and mathematical physics. 

Another extensive division of differential geometry is the 
theory of orthogonal systems, of such importance in physics. 
We note especially the investigations of Dupin, Jacobi, Lamé, 
Darboux, Combescure, and Bianchi. 

We have already mentioned the intimate relation between 
differential geometry and differential equations developed by 
Monge and Lie. Among the workers in this fruitful field 
Darboux deserves especial mention. 

One of the most original and interesting contributions to 
geometry in the last decades of the century is Lie's sphere 
geometry. As a brilliant application of it to differential 
geometry we may mention the relation discovered by Lie 
between asymptotic lines and lines of curvature of a surface. 
The subject of sphere geometry has been developed also by 
Darboux, Reye, Laguerre, Loria, P . F . Smith, and E. Muller. 
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Other Branches of Geometry. 

Under this head we group a number of subjects too impor
tant to pass over in silence, yet which cannot be considered at 
length for lack of time. 

In the first place is the immense subject of algebraic curves 
and surfaces. Adequately to develop all the important and 
elegant properties of curves and surfaces of the second order 
alone, would require a bulky volume. In this line of ideas 
would follow curves and surfaces of higher order and class. 
Their theory is far less complete, but this lack it amply makes 
good by offering an almost bewildering variety of configura
tions to classify and explore. No single geometer has contri
buted more to this subject than Cayley. 

A theory of great importance is the geometry on a curve or 
surface inaugurated by Clebsch in 1863. Expressing the coor
dinates of a plane cubic by means of elliptic functions and 
employing their addition theorems, he deduced with hardly any 
calculation Steiner's theorem relating to the inscribed polygons 
and various theorems concerning conies touching the curve. 
Encouraged by such successes Clebsch proposed to make use 
of Riemann's theory of abelian functions in the study of alge* 
braic curves of any order. The most important result was a 
new classification of such curves. Instead of the linear trans
formation Clebsch, in harmony with Riemann's ideas, employs 
the birational transformation as a principle of classification. 
From this standpoint we ask what are the properties of alge
braic curves which remain invariant for such transformation. 

Brill and Noether follow Clebsch. Their method is, however, 
algebraical and rests on their celebrated residual theorem, 
which in their hands takes the place of AbePs theorem. We 
mention further the investigations of Castelnuovo, Weber, Krauss 
and Segre. An important division of this subject is the theory of 
correspondences. First studied by Chasles for curves of de
ficiency 0 in 1864, Cayley and immediately after Brill extended 
the theory to the case of any p. The most important advance 
made in later years has been made by Hurwitz, who considers 
the totality of possible correspondences on an algebraic curve, 
making use of the abelian integrals of the first species. 

Alongside the geometry on a curve is the vastly more dif
ficult and complicated geometry on a surface, or more generally, 
on any algebraic spread in w-way space. Starting from a 
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remark of Clebsch 1868, Noether made the first great step in 
his famous memoirs of 1868-74. Further progress has been 
due to the French and Italian mathematicians. Picard, Poin-
caré, and Humbert make use of transcendental methods in 
which figure prominently double integrals which remain finite 
on the surface and single integrals of total differentials. On 
the other hand Enriques and Castelnuovo have attacked the 
subject from a more algebraic-geometric standpoint by means 
of linear systems of algebraic curves on the surface. 

The first invariants of a surface were discovered by Clebsch 
and Noether ; still others have been found by Castelnuovo and 
Enriques in connection with irregular surfaces. 

Leaving this subject let us consider briefly the geometry of 
n dimensions. A characteristic of nineteenth century mathe
matics is the generality of its methods and results. When such 
has been impossible with the elements in hand, fresh ones have 
been invented ; witness the introduction of imaginary numbers 
in algebra and the function theory, the ideals of Kummer in the 
theory of numbers, the line and plane at infinity in projective 
geometry. The benefit that analysis derived from geometry 
was too great not to tempt mathematicians to free the latter 
from the narrow limits of three dimensions and so give it the 
generality that the former has long enjoyed. The first pioneer 
in this abstract field was Grassmann (1844) ; we must, however, 
consider Cayley as the real founder of ^-dimensional geometry 
(1869). Notable contributions have been made by the Italian 
school, Veronese, Segre, and others. 

Non-Euclidean Geometry. 

Each century takes over as a heritage from its predecessors 
a number of problems whose solution previous generations of 
mathematicians have arduously but vainly sought. I t is a 
signal achievement of the nineteenth century to have triumphed 
over some of the most celebrated of these problems. 

The most ancient of them is the quadrature of the circle, 
which already appears in our oldest mathematical document, the 
Papyrus Rhind, B. C. 2000. Its impossibility was finally shown 
by Lindemann, 1882. 

Another famous problem relates to the solution of the quintic, 
which had engaged the attention of mathematicians since the 
middle of the sixteenth century. The impossibility of ex-
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pressing its roots by radicals was finally shown by the youth
ful Abel (1824), while Hermite and Kronecker (1858) showed 
how they might be expressed by the elliptic modular functions, 
and Klein (1875) by means of the icosahedral irrationality. 

But of all problems which have come down from the past by 
far the most celebrated and important relates to Euclid's par
allel axiom. Its solution has profoundly affected our views of 
space and given rise to questions even deeper and more far 
reaching, which embrace the entire foundation of geometry and 
our space conception. Let us pass in rapid review the princi
pal events of this great movement. Wallis in the seventeenth, 
Saccheri, Lambert, and Legendre in the eighteenth are the first 
to make any noteworthy progress before the nineteenth century. 
The really profound investigations of Saccheri and Lambert 
strangely enough were entirely overlooked by later writers 
and have only recently come to light. 

In the nineteenth century non-euclidean geometry develops 
along four directions which roughly follow each other chrono
logically. Let us consider them in order. 

The naive-synthetic direction, — The methods employed are 
similar to those of Euclid. His axioms are assumed with the 
exception of the parallel axiom ; the resulting geometry is what 
is now called hyperbolic or Lobachevsky's geometry. I ts 
principal properties are deduced ; in particular its trigonometry, 
which is shown to be that of a sphere with imaginary radius, 
as Lambert had divined. As a specific result of these investi
gations the long-debated question relating to the independence 
of the parallel axiom was finally settled. The great names in 
this group are Lobachevsky, Bolyai, and Gauss. The first pub
lications of Lobachevsky are his Exposition succincte des prin
cipes de la géométrie (1829) and the Geometrische Untersu-
chungen (1840). Bolyai's Appendix was published in 1832. 
As to the extent of Gauss's investigations we can only judge 
from scattered remarks in private letters and his reviews of 
books relating to the parallel axiom. His dread of the Ge
schrei der Böotier, i. e., the followers of Kant, prevented him 
from publishing his extensive speculations. 

The metric-differential direction,— This is inaugurated by three 
great memoirs by Riemann, Helmholtz, and Beltrami, all pub
lished in the same year, 1868. 

Beltrami, making use of results of Gauss and Minding, re
lating to the applicability of two surfaces, shows that the hyper-
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bolic geometry of a plane may be interpreted on a surface of 
constant negative curvature, the pseudosphere. By means of 
this discovery the purely logical and hypothetical system of 
Lobachevsky and Bolyai takes on a form as concrete and 
tangible as the geometry of a plane. 

The work of Riemann is as original as profound. He con
siders space as an n-dimensional continuous numerical multi
plicity which is distinguished from the infinity of other such 
multiplicities by certain well-defined characters. Chief of them 
are, 1) the quadratic differential expression which defines the 
length of an element of arc, and 2) a property relative to the 
displacements of this multiplicity about a point. There are an 
infinity of space multiplicities which satisfy Eiemann's axioms. 
By extending Gauss's definition of the curvature k of a surface at 
a point to curvature of space at a point by considering the 
geodesic surfaces passing through that point, Riemann finds 
that all these spaces fall into three classes according as k is 
equal to, greater, or less than 0. For n = 3 and i = 0we have 
euclidean space ; when J < 0 we have the space found by 
Gauss, Lobachevsky and Bolyai ; when i > 0 we have the 
space first considered in the long forgotten writings of Saccheri 
and Lambert, in which the right line is finite. 

Helmholtz like Riemann considers space as a numerical mul
tiplicity. To further characterize it Helmholtz makes use of the 
notions of rigid bodies and free mobility. His work has been 
revised and materially extended by Lie from the standpoint of 
the theory of groups. 

In the present category, as also in the following one, belong 
important papers by Killing. 

The projective direction. — We have already noticed the efforts 
of the synthetic school to express metric properties by means 
of projective relations. In this the circular points at infinity 
were especially serviceable. An immense step in this direction 
was taken by Laguerre who showed, 1853, that all angles might 
be expressed as anharmonic ratios with reference to these 
points, i. e., with reference to a certain fixed conic. The next 
advance is made by Cayley in his famous sixth memoir on 
quantics, 1859. Taking any fixed conic (or quadric, for space) 
which he calls the absolute, Cayley introduces two expressions 
depending on the anharmonic ratio with reference to the ab
solute. When this degenerates into the circular points at infi
nity, these expressions go over into the ordinary expressions 
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for the distance between two points and the angle between two 
lines. Thus all metric relations may be considered as projective 
relations with respect to the absolute. Cayley does not seem 
to be aware of the relation of his work to non-euclidean 
geometry. This was discovered by Klein (1871). In fact, 
according to the nature of the absolute various geometries are 
possible ; among these are precisely the three already mentioned. 
Klein has made many important contributions to non-euclidean 
geometry. We mention his modification of von Staudt's definition 
of anharmonic ratio so as to be independent of the parallel 
axiom, his discovery of the two forms of Riemann's space, and 
finally his contributions to a class of geometries first noticed by 
Clifford, which are characterized by the fact that only certain of 
its possible displacements can affect space as a whole. 

As a result of all these investigations both in the projective, 
as also in the metric differential direction we are led irresist
ibly to the same conclusion, viz.: The facts of experience can 
be explained by all three geometries when the constant k is 
taken small enough. I t is therefore merely a question of con
venience whether we adopt the parabolic, hyperbolic, or elliptic 
geometry. 

The critical synthetic direction represents a return to the old 
synthetic methods of Euclid, Lobachevsky and Bolyai with the 
added feature of a refined and exacting logic. Its principal study 
is not of non-euclidean but of euclidean geometry. Its aim 
is to establish a system of axioms for our ordinary space which 
are complete, compatible, and irreducible. The fundamental 
terms, point, line, plane, between, congruent, etc., are intro
duced as abstract marks whose properties are determined by 
inter-relations in the form of axioms. Geometric intuition 
has no place in this order of ideas which regards geometry as a 
mere division of pure logic. The efforts of this school have 
already been crowned with eminent success, and much may be 
expected from it in the future. Its leaders are Peano, Veron
ese, Pieri, Padoa, Burali-Forti, and Levi-Civita in Italy, Hubert 
in Germany, Moore in America, and Russell in England. 

Closing at this point our hasty and imperfect survey of 
mathematics in the last century let us endeavor to sum up its 
main characteristics. What strikes us at once is its colossal 
proportions and rapid growth in nearly all directions, the great 
variety of its branches, the generality and complexity of its 



1904.] DE SÉGUIER'S THEORY OF ABSTRACT GROOTS. 159 

methods, an inexhaustible creative imagination, the fearless 
introduction and employment of ideal elements, and an appre
ciation for a refined and logical development of all its parts. 

We who stand on the threshold of a new century can look 
back on an era of unparalleled progress. Looking into the 
future an equally bright prospect greets our eyes ; on all sides 
fruitful fields of research invite our labor and promise easy and 
rich returns. Surely this is the golden age of mathematics ! 

OUTER ISLAND, 
September, 1904. 

D E SÉGUIER'S T H E O R Y O F ABSTRACT GROUPS. 

Eléments de la Théorie des Groupes Abstraits. By J.-A. D E 
SÉGUIER. Paris, Gauthier-Villars, 1904. ii + 176 pp. 
T H E title for the complete treatise is Théorie des groupes 

finis. The present first volume deals with the theory as far as 
it demands no concrete representation. The second volume is 
to be entitled Compléments. 

The Eléments gives a remarkably compact presentation of 
purely abstract group theory, including the most recent results. 
The attempt has been made to extend as far as possible the 
general theorems to infinite groups. The broader view thus 
gained more than compensates for the increased abstruseness. 
I t appeals particularly to the reviewer who has given much 
attention to the coordination of the various branches of analytic 
group theory into a comprehensive theory of analytic groups in 
an arbitrary field. The inclusion of infinite groups, moreover, 
gives the author the means of a natural presentation of negative 
and rational numbers, Galois's imaginaries, and algebraic numbers, 
as elements of certain groups. The author is therefore justified 
in giving (pages 27-51) a very compact, but practically com
plete, account of Galois fields (champ, corps de Galois). 
Relative to a first mode of composition, called addition, CN is 
an additive group ; relative to a second mode of composition 
Cy, with zero omitted, is a multiplicative group, and one may 
set Ox = xO = 0 by definition ; a final postulate makes multi
plication distributive with respect to addition. 

The opening six pages on Cantor's assemblages establish his 
distinction between finite and infinite sets, but make no classi
fication of the latter. Throughout the text the term corps is 


