10. If l cuts c_{4} in κ, the surface is a nodal cubic, having one node at κ, and another at the node of $c_{4} \quad R_{8}$ breaks up into K_{3} and R_{5}, the latter having the symbol $l_{2}+c_{4}^{2}+3^{2}$ (Schwarz's A, vii), the double generation being the line joining the node to the fourth point in the plane containing l. Thus,

$$
\left(F_{3}, R_{5}\right)=l(2)+c_{4}(8)+g_{2}(2)+3 s_{2}(3)
$$

If c_{4} has a cusp, the second nodal point becomes uniplanar. Further specializations result in quadrics and quadric cones.

Cornell University,
January, 1906.

OPERATION GROUPS OF ORDER $p_{1}^{m_{1} \mu_{1}} p_{2}^{m_{2} \mu_{2}}$.

BY PROFESSOR O. E. GLENN.

IT is desired to make certain generalizations concerning the groups of order the product of powers of two primes p_{1}, p_{2}, such that $p_{1} \equiv 1\left(\bmod p_{2}\right)$, these groups possessing abelian subgroups H_{i} of type $\left[\mu_{i}, \mu_{i}, \cdots, \mu_{i}\right.$] $(i=1,2)$. It is possible to specify for these groups those subgroups (here called basic subgroups) from which it is necessary and sufficient that generating operations be selected in order that they may generate the whole group G. This general problem connected with groups of composite order seems to merit more attention than it has thus far received. If

$$
H_{1}=\left\{P_{1}, P_{2}, \cdots, P_{m_{1}}\right\}, \quad H_{2}=\left\{Q_{1}, Q_{2}, \cdots, Q_{m_{2}}\right\}
$$

then the number of operations of order $p_{i}^{\mu_{i}}$ in H_{i} is

$$
\begin{aligned}
& \sum_{j=0}^{m_{i}-1}{ }_{m_{i}} C_{j}\left[p_{i}^{\mu_{i}}-\Phi\left(p_{i}^{\mu_{i}}\right)\right]^{j}\left[\Phi\left(p_{i}^{\mu_{i}}\right)\right]^{m_{i}-j} \\
& \quad=\left[p_{i}^{\mu_{i}-1}+\Phi\left(p_{i}^{\mu_{i}}\right)\right]^{m_{i}}-p^{m_{i}\left(\mu_{i}-1\right)}
\end{aligned}
$$

so that the number of cyclical subgroups of order $p_{i}^{\mu_{i}}$ in H_{i} is

$$
\begin{aligned}
N_{p_{i}}^{\mu_{i}}= & \frac{p_{i}^{m_{i}\left(\mu_{i}-1\right)}\left(p_{i}^{m_{i}}-1\right)}{\Phi\left(p_{i}^{\mu}\right)} \\
& =p_{i}^{\left(m_{i}-1\right)\left(\mu_{i}-1\right)}\left(p_{i}^{m_{i}-1}+p_{i}^{m_{i}-2}+\cdots+p_{i}+1\right)
\end{aligned}
$$

Let us now suppose that $\mu_{1}=\mu_{2}=1$. Transformation of the $N_{p_{1}}^{1}$ subgroups of H_{1} by Q_{κ} permutes them in sets of p_{2} or else leaves them invariant. If $\rho_{Q_{\kappa}, p_{1}}$ is the number left invariant

$$
N_{p_{1}}^{1}-\rho_{Q_{\kappa}, p_{1}} \equiv 0\left(\bmod p_{2}\right)
$$

and when $p_{1} \equiv 1\left(\bmod p_{2}\right), \rho_{Q_{\kappa}, p_{1}} \geqq m_{1}$. It follows that P_{λ} $\left(\lambda=1,2, \cdots, m_{1}\right)$ can be so selected that

$$
\begin{equation*}
Q_{1}^{-1} P_{\lambda} Q_{1}=P_{\lambda}^{a_{1 \lambda}}, \alpha^{p_{2}} \equiv 1\left(\bmod p_{1}\right) . \tag{1}
\end{equation*}
$$

Now H_{1} is self-conjugate * in G hence

$$
Q_{2}^{-1} P_{\lambda} Q_{2}=P_{1}^{a_{1 \lambda}} P_{2}^{a 2 \lambda} \ldots P_{m_{1}}^{a m_{1} \lambda}
$$

and

$$
\begin{aligned}
\left(Q_{1} Q_{2}\right)^{-1} P_{\lambda}\left(Q_{1} Q_{2}\right) & =\prod_{\nu=1}^{m_{1}} P_{\nu}^{a_{\nu \lambda}} a^{x_{1} \lambda}=\left(Q_{2} Q_{1}\right)^{-1} P_{\lambda}\left(Q_{2} Q_{1}\right) \\
& =\prod_{\nu=1}^{m_{1}} P_{\nu}^{a_{\nu \lambda} a^{\alpha_{1}}} .
\end{aligned}
$$

$$
\begin{equation*}
a_{\nu \lambda}\left(\alpha^{x_{1 \lambda}}-\alpha^{x_{1 \nu}}\right) \equiv 0\left(\bmod p_{1}\right) \tag{2}
\end{equation*}
$$

and if $x_{1 \lambda} \neq x_{1 \nu}\left(\bmod p_{2}\right)$ then $a_{\nu \lambda} \equiv 0\left(\bmod p_{1}\right)$. Suppose on the other hand that some of the $x_{1 \lambda}$ are congruent to some of the $x_{1 \nu}(\nu \neq \lambda)$, say $x_{1 \lambda} \equiv x_{1 \nu}(\nu=\lambda+1, \lambda+2, \cdots, \lambda+r)$, then $a_{\lambda+i}$, may be zero or not. Assuming the latter, we prove that all the subgroups in the group $\left\{P_{\lambda}, P_{\lambda+1}, P_{\lambda+2}, \cdots, P_{\lambda+r}\right\}$ are permutable with Q_{1}, and the operations $P_{\lambda}, P_{\lambda+1}, P_{\lambda+2}, \cdots, P_{\lambda+r}$, Q_{2} form a subgroup of order $p_{1}^{r+1} p_{2}$.

The first statement is obvious since

$$
Q_{1}^{-1} \prod_{i=0}^{r} P_{\lambda+i}^{a_{i}} Q_{1}=\left(\prod_{i=0}^{r} P_{\lambda+i}^{a_{i}}\right)^{a^{x_{1 \lambda}}} .
$$

To prove the latter we have

Also

$$
Q_{2}^{-1} P_{\lambda} Q_{2}=P_{\lambda}^{a_{\lambda}} P_{\lambda+1}^{a_{\lambda+1}, \lambda} \ldots P_{\lambda+r}^{a_{\lambda+r}, \lambda}=\prod_{i=0}^{r} P_{\lambda+i}^{a_{\lambda+i}, \lambda} .
$$

$\left(Q_{1} Q_{2}\right)^{-1} P_{\lambda+i}\left(Q_{1} Q_{2}\right)=P_{1}^{a_{1}, \lambda+i^{a_{1 \lambda}}} P_{2}^{a_{2}, \lambda+i a^{a_{1 \lambda}}} \cdots P_{m_{1}}^{a_{m \lambda i} a^{a_{1 \lambda}}}$
$=\prod_{j=1}^{m_{1}} P_{j}^{a_{j, \lambda+i a^{a^{1 /}}}}=\left(Q_{2} Q_{1}\right)^{-1} P_{\lambda+i}\left(Q_{2} Q_{1}\right)$
$=P_{1}^{a_{1}, \lambda+i i^{x_{1}}} P_{2}^{a_{2}, \lambda+i i^{x_{12}}} \ldots P_{\lambda}^{a_{\lambda, \lambda+i i_{1}}^{x_{1}}} \ldots P_{\lambda+r}^{a_{\lambda+r}, \lambda+i i^{\alpha_{1}}} \ldots P_{m_{1}}^{a_{m_{1}}+i i^{x_{1}} m_{1}}$,

[^0]and since
\[

$$
\begin{aligned}
x_{1 k} \neq x_{1 \lambda} & (k \neq \lambda, \lambda+1, \cdots, \lambda+r), \\
a_{j, \lambda+i} \equiv 0\left(\bmod p_{1}\right) & (j \neq \lambda, \lambda+1, \cdots, \lambda+r),
\end{aligned}
$$
\]

so that

$$
\begin{aligned}
Q_{2}^{-1} P_{\lambda+i} Q_{2}=P_{\lambda}^{a_{\lambda, \lambda+i}} P_{\lambda+1}^{a_{\lambda+1}, \lambda+i} \ldots P_{\lambda+r}^{a_{\lambda+r}, \lambda+i} & =\prod_{j=\lambda}^{\lambda+r} P_{j}^{a_{j}, \lambda+i} \\
(i & =0,1,2, \ldots, r),
\end{aligned}
$$

and the operations P_{j}, Q_{2} form a subgroup (I) of order $p_{1}^{r+1} p_{2}$. The number of subgroups of order p_{1} in (I) is

$$
p_{1}^{r}+p_{1}^{r-1}+\cdots+p_{1}+1
$$

and at least $r+1$ of them are permutable with Q_{2}, since $p_{1} \equiv 1\left(\bmod p_{2}\right)$. If these are $\left\{P_{j}^{\prime}\right\}(j=\lambda, \lambda+1, \cdots, \lambda+r)$, then, on replacing P_{j} by P_{j}^{\prime}, the series of m_{1} independent generators of H_{1}

$$
P_{1}, P_{2}, P_{3}, \cdots, P_{\lambda-1}, P_{\lambda}^{\prime}, P_{\lambda+1}^{\prime}, \cdots, P_{\lambda+r}^{\prime}, P_{\lambda+r+1}, \cdots, P_{m_{1}}
$$

has the property that each generator is transformed into one of its own powers by both Q_{1} and Q_{2}. Hence, referring back to equation (2), even when $x_{1 \lambda} \equiv x_{1 \nu}\left(\bmod p_{2}\right)$ we may write $a_{\nu \lambda} \equiv 0\left(\bmod p_{1}\right)(\nu \neq \lambda) . \quad$ It is also obvious that when $\nu=\lambda$, then $a_{\lambda \lambda} \equiv$ some power of α, as $\alpha^{x_{2 \lambda}}$. Hence G is defined by the relations

$$
\begin{gathered}
P_{\lambda}^{p_{1}}=Q_{\kappa}^{p_{2}}=1, P_{\lambda} P_{\nu}=P_{\nu} P_{\lambda}, Q_{\kappa} Q_{l}=Q_{l} Q_{\kappa}, Q_{\kappa}^{-1} P_{\lambda} Q_{\kappa}=P_{\lambda}^{a_{k}{ }_{k \lambda}} \\
\left(\lambda, \nu=1,2, \cdots, m_{1} ; \kappa, l=1,2, \cdots, m_{2}\right) \\
a^{p_{2}} \equiv 1\left(\bmod p_{1}\right), \quad x_{\kappa \lambda} \equiv 0,1, \cdots, p_{2}-1\left(\bmod p_{2}\right) .
\end{gathered}
$$

Lemma: There are $m_{2}-1$ of the $x_{k \lambda}$ equal to zero, and no generality is lost by assuming that

$$
x_{11} \equiv x_{21} \equiv x_{31} \equiv \because x_{m_{2}-1,1} \equiv 0, x_{m_{2} 1} \equiv 1\left(\bmod p_{2}\right) .
$$

Since G is by assumption non-divisible, there is at least one operation, as $Q_{m_{2}}$, which transforms P_{1} into $P_{1}^{a}(\alpha \neq 1)$. Say $Q_{m_{2}}^{-1} P_{1} Q_{m_{2}}=P_{1}^{a}$. If $Q_{m_{2}-\tau}^{\prime}$ is any other generator of H_{2}, by what has been given

$$
Q_{m_{2}-\tau}^{\prime-1} P_{1} Q_{m_{2}-\tau}^{\prime}=P_{1}^{a_{1}^{\prime} m_{m_{2}-\tau, 1}^{\prime}}=Q_{m_{2}-x_{m_{2}-\tau, 1}^{\prime}}^{x_{1}} Q_{1}^{v_{m_{2}-\tau, 1}^{\prime}}
$$

$$
\therefore\left(Q_{m_{2}-\tau}^{\prime} Q_{m_{2}}^{-x_{m_{2}-\tau, 1}^{\prime}}\right)^{-1} P_{1}\left(Q_{m_{2}-\tau}^{\prime} Q_{m_{2}}^{-x_{m_{2}-\tau, 1}^{\prime}}\right)=P_{1}
$$

$$
\left(=Q_{m_{2}-\tau}^{-1} P_{1} Q_{m_{2}-\tau} \text { say }\right)
$$

It follows that $Q_{m_{2}-\tau}\left(\tau=1,2, \cdots, m_{2}-1\right)$ is permutable with P_{1}, so that $x_{11} \equiv x_{21} \cdots \equiv x_{m_{2}-1,1} \equiv 0$ and $x_{m_{2} 1} \equiv 1$. By this means all the generators of order p_{2} of the group G are fixed and no other invariants $x_{k \lambda}$ can be placed equal to zero without destroying the generality of the defining relations.

The most general form of the generating operations of order p_{1} of G will now be derived.

Let

$$
\bar{P}_{t}=P_{1}^{a_{1 t}} P_{2}^{\alpha_{2 t}} \ldots P_{m_{1}}^{\alpha_{m_{1} t}} ; \quad \bar{Q}_{u}=Q_{1}^{\beta_{1 u}} Q_{2}^{\beta_{2 u}} \cdots Q_{m_{2}}^{\beta_{m_{2} u}}
$$

and write

$$
\bar{Q}_{u}^{-1} \bar{P}_{t} \bar{Q}_{u}=\bar{P}_{t}^{a_{u t}} .
$$

Under the assumption $\alpha_{i t} \neq 0\left(\bmod p_{1}\right)$ we get
(3) $\beta_{m_{2} u} x_{m_{2} i}+\beta_{m_{2}-1 u} x_{m_{2}-1 i}+\beta_{m_{2}-2 u} x_{m_{2}-2 i}$

$$
+\cdots+\beta_{1 u} x_{1 i} \equiv x_{u t}\left(\bmod p_{2}\right) \quad\left(i=1,2, \cdots, m_{1}\right)
$$

so that for a chosen t (say $t=1$) and a chosen u (as $u=1$) we have a set of m_{1} linear congruences in the $\beta_{k u t}$ (as the following):

$$
\left.\begin{array}{l}
\beta_{m_{2} 1} \equiv 0 \\
\beta_{m_{2}-11} x_{m_{2}-1,2}+\cdots+\beta_{11} x_{12} \equiv 0, \tag{4}\\
\beta_{m_{2}-11} x_{m_{2}-1,3}+\cdots+\beta_{11} x_{13} \equiv 0, \\
\cdot \cdot \cdot \cdot \\
\beta_{m_{2}-11} x_{m_{2}-1, m_{1}}+\cdots+\beta_{11} x_{1 m_{1}} \equiv 0,
\end{array}\right\}\left(\bmod p_{2}\right)
$$

If no $\alpha_{i 1} \equiv 0$, then assuming $m_{1}=m_{2}$,

$$
\left|\begin{array}{cccc}
x_{m_{2}-1,2} & \cdots & x_{12} \\
x_{m_{2}-1,3} & \cdots & x_{13} \\
\cdot & \cdot & \cdot & \cdot \\
x_{m_{2}-1, m_{1}} & \cdots & x_{1 m_{1}}
\end{array}\right| \equiv 0\left(\bmod p_{2}\right)
$$

a relation among the invariants of the group which is not possible in general. Hence since we seek general generators of the group we must have at least one $\alpha_{i 1}$ ($⿻=\alpha_{11}$ since \bar{P}_{1} obviously $=P_{1}^{a_{11}}$ as a special case) and one of the $\beta_{k l}$; viz., $\beta_{m_{2} 1}$ equal to zero. Again if $m_{1}=m_{2}+\sigma(\sigma=$ integer $)$, then at least $\sigma+1$ of the $\alpha_{i 1}\left(\neq \alpha_{11}\right)$ are zero. If $m_{1}<m_{2}$, no $\alpha_{i 1}$ is necessarily zero, by virtue of (4). In the same way if $u=2, t=1$, $\beta_{m_{2}, 2} \equiv 0$, and in general if $u=u\left(<m_{2}\right) t=1, \beta_{m_{2} u} \equiv 0$; the same condition holding for $m_{1} \geqq m_{2}$ as above. When $u=m_{2}$, $t=1$ we have

$$
\left.\begin{array}{r}
\beta_{m_{2} m_{2}} x_{m_{21}} \equiv 1,\left(\text { whence } \beta_{m_{2} m_{2}} \equiv 1\left(\bmod p_{2}\right)\right) \\
x_{m_{2} 2}+\beta_{m_{2}-1 m_{2}} x_{m_{2}-12}+\cdots+\beta_{1 m_{2}} x_{12} \equiv 1, \\
x_{m_{2} 3}+\beta_{m_{2}-1 m_{2}} x_{m_{2}-13}+\cdots+\beta_{1 m_{2}} x_{13} \equiv 1, \\
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot\left(\bmod p_{2}\right) . \\
x_{m_{2} m_{1}}+\beta_{m_{2}-1 m_{2}} x_{m_{2}-1 m_{1}}+\cdots+\beta_{1 m_{2}} x_{1 m_{1}} \equiv 1,
\end{array}\right\}
$$

And except for $\beta_{m_{2} m_{2}} \equiv 1$, the conclusions are the same as above; and the argument may be repeated for $t=2,3, \ldots$, m_{1} in equation (3). The general result is the following :

Theorem : The necessary and sufficient conditions that a given set of m_{i} operations of order $p_{i}(i=1,2)$ of G shall generate G are (1) that they be independent, (2) if $m_{1}=m_{2}+\sigma$ then \bar{P}_{t} must be selected from a certain basic subgroup of H_{1}, of order $\leqq p_{1}^{m_{1}-\sigma-1}$, in which of course P_{t} occurs ; $\overline{Q_{u}}\left(u<m_{2}\right)$ is likewise an operation of a subgroup of order $p_{2}^{m_{2}-1}$, containing Q_{u}, viz., of $\left\{Q_{1}, Q_{2}, \cdots, Q_{m_{2}-1}\right\}$. It immediately follows since the $x_{\kappa \lambda}$ are invariants of the group that these basic subgroups must be of order p_{1} (one $a_{i t}$ 丰 0) and coincide with the $\left\{P_{t}\right\}$. The number of groups isomorphic to a given type (given set of invariants $x_{k \lambda}$) is equal to the number of distinct types obtained by transforming G by all m_{1} ! permutations of the basic subgroups.

In particular if $m_{2}=1$, so that $m_{1}=m_{2}+m_{1}-1$ the basic subgroups are of order $p_{1}^{m_{1}-m_{1}+1}=p_{1}$. In other words $\overline{P_{t}}=\boldsymbol{P}_{t}$ and $\overline{Q_{1}}=Q_{1}^{\beta_{11}}$, and all the types isomorphic to a given type are obtainable by permuting the m_{1} subgroups $\left\{P_{t}\right\}$ in the m_{1} ! possible ways. The number of non-isomorphic types has been determined for this case in the form*

[^1]$$
N=\frac{1}{m_{1}}\left[\sum_{\sigma=0}^{\left.\left(m_{1}-1\right) p_{2}-2\right)} P\left(0,1, \cdots, p_{2}-2\right)^{m_{1}-1} \sigma+\psi\right],
$$
where $P\left(0,1, \cdots, p_{2}-2\right)^{m_{1}-1} \sigma$ stands for the number of partitions of σ in $\left(m_{1}-1\right)$'s by the numbers $0,1, \cdots, p_{2}-2$; and ψ is a determinate function of p_{2} and m_{1}.

Springfield, Mo.,
December, 1905.

A DEFINITION OF QUATERNIONS BY INDEPENDENT POSTULATES.*

BY MISS R. L. CARSTENS.
(Read before the American Mathematical Society, February 24, 1906.)

§ 1. Quaternions with respect to a Domain D. \dagger

The usual theory relates to quaternions $a_{1}+a_{2} i+a_{3} j+a_{4} k$ in which the coefficients a_{i} range independently over all real numbers or else over all complex numbers, and the units have the following multiplication table :

		i	j	k
	1	i	j	k
i	i	-1	k	$-j$
j	j	$-k$	-1	i
k	k	j	$-i$	-1

These conditions give the real quaternion system and the octonion system. \ddagger As an obvious generalization, the coefficients may range independently over all the elements of any domain D.

[^2]
[^0]: * Burnside, Finite Groups, p. 351, Theorem V.

[^1]: * Bulletin, vol. 11, No. 6, p. 318.

[^2]: *See Dickson, "On hypercomplex number systems," Transactions Amer. Math. Society, vol. 6 (1905).
 \dagger A domain consists of any class of elements.
 \ddagger Octonions may be considered as quaternions with complex coefficients.

