$$N = \frac{1}{m_1} \left[\sum_{\sigma=0}^{(m_1-1)(p_2-2)} P(0, 1, \dots, p_2-2)^{m_1-1} \sigma + \psi \right],$$

where $P(0, 1, \dots, p_2 - 2)^{m_1-1}\sigma$ stands for the number of partitions of σ in $(m_1 - 1)$'s by the numbers $0, 1, \dots, p_2 - 2$; and ψ is a determinate function of p_2 and m_1 .

SPRINGFIELD, Mo., December, 1905.

A DEFINITION OF QUATERNIONS BY INDEPENDENT POSTULATES.*

BY MISS R. L. CARSTENS.

(Read before the American Mathematical Society, February 24, 1906.)

§ 1. Quaternions with respect to a Domain $D.^{\dagger}$

THE usual theory relates to quaternions $a_1 + a_2 i + a_3 j + a_4 k$ in which the coefficients a_i range independently over all real numbers or else over all complex numbers, and the units have the following multiplication table :

	1	i	j	k
1	1	i	j	k
i	i	- 1	k	-j
j	j	-k	_ 1	i
k	k	$_{j}$	-i	-1

These conditions give the real quaternion system and the octonion system.[‡] As an obvious generalization, the coefficients may range independently over all the elements of any domain D.

^{*}See Dickson, "On hypercomplex number systems," Transactions Amer. Math. Society, vol. 6 (1905).

[†] A domain consists of any class of elements.

[‡] Octonions may be considered as quaternions with complex coefficients.

1906.]

§ 2. The Postulates.

A set of four ordered elements $a = [a_1, a_2, a_3, a_4]$ of D will be called a quaternion a. The symbol $a = [a_1, a_2, a_3, a_4]$ employed is purely positional, without functional connotation. Its definition implies that a = b if and only if $a_1 = b_1$, $a_2 = b_2$, $a_3 = b_3, a_4 = b_4.$

^s Postulate I.^{*} If a and b are any two quaternions, then $s = \begin{bmatrix} a_1 + b_1, a_2 + b_2, a_3 + b_3, a_4 + b_4 \end{bmatrix}$ is a quaternion.

Definition. Addition of quaternions is defined by $a \oplus b = s$. Postulate II. 0 = [0, 0, 0, 0] is a quaternion.

Postulate III. If $\overline{0}$ is a quaternion, then to any quaternion a corresponds a quaternion a' such that $a \oplus a' = 0$.

Theorem 1. Quaternions form a commutative group under addition.

Postulate IV. a and b being any two quaternions, then $a \oplus b = p = [p_1, p_2, p_3, p_4]$ is a quaternion, where

$$\begin{split} p_1 &= a_1 b_1 - a_2 b_2 - a_3 b_3 - a_4 b_4, \quad p_3 &= a_1 b_3 - a_2 b_4 + a_3 b_1 + a_4 b_2 \\ p_2 &= a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3, \quad p_4 &= a_1 b_4 + a_2 b_3 - a_3 b_2 + a_4 b_1, \end{split}$$

if the p_i 's are in D.

Definition. The product of two quaternions is defined by $a \otimes b = p.$

Theorem 2. Multiplication is not commutative.

Theorem 3. Multiplication is distributive (right and left).

Theorem 4. Multiplication is associative.

To make quaternions four dimensional we add a fifth postulate :

Postulate V. If τ_1 , τ_2 , τ_3 , τ_4 are elements of D such that $\tau_1 a_1 + \tau_2 a_2 + \tau_3 a_3 + \tau_4 a_4 = 0$ for every quaternion a, then $\tau_1 = 0$, $\tau_2 = 0$, $\tau_3 = 0$, $\tau_4 = 0$. Theorem 5. There exist four quaternions $\epsilon_i = [a_{i1}, a_{i2}, a_{i3}, a_{i3}, a_{i3}, a_{i4}, a_{i4}, a_{i4}, a_{i4}, a_{i4}, a_{i5}, a_{i5}, a_{i4}, a_{i5}, a_{i$

 a_{i4} such that $|a_{ii}| \neq 0$.

§ 3. Identification with Ordinary Quaternions.

The quaternion system as thus defined is holoedrically isomorphic with the quaternions of Hamilton, the coefficients belonging to the same domain D.

The quaternions $e_1 = [1, 0, 0, 0]$, $e_2 = [0, 1, 0, 0]$, $e_3 = [0, 0, 1, 0]$, $e_4 = [0, 0, 0, 1]$ form a four dimensional system since

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \neq 0.$$

By postulate IV and the definition of multiplication, these quaternions e have the multiplication table

which, apart from symbolism, is the same as the table of § 1.

§ 4. On the Independence of the Postulates.

If D is a domain admitting addition and subtraction, postulates II and III are redundant.

Aside from this case, postulates I–V are independent as shown by the following systems :

(I) Elements 0, $[\pm 1, 0, 0, 0]$, $[0, \pm 1, 0, 0]$, [0, 0, 0], $\pm 1, 0]$, $[0, 0, 0, \pm 1]$.

(II) \overline{D} is the domain of positive integers.

(III) Set (II) with 0 added.

(IV) D is the domain of complex numbers, the a_i being pure imaginaries.

(V) a_1 arbitrary; other a's = 0.

THE UNIVERSITY OF COLORADO, BOULDER, COLO., February, 1906.