$$
N=\frac{1}{m_{1}}\left[\sum_{\sigma=0}^{\left.\left(m_{1}-1\right) p_{2}-2\right)} P\left(0,1, \cdots, p_{2}-2\right)^{m_{1}-1} \sigma+\psi\right],
$$

where $P\left(0,1, \cdots, p_{2}-2\right)^{m_{1}-1} \sigma$ stands for the number of partitions of σ in $\left(m_{1}-1\right)$'s by the numbers $0,1, \cdots, p_{2}-2$; and ψ is a determinate function of p_{2} and m_{1}.

Springfield, Mo.,
December, 1905.

A DEFINITION OF QUATERNIONS BY INDEPENDENT POSTULATES.*

BY MISS R. L. CARSTENS.
(Read before the American Mathematical Society, February 24, 1906.)

§ 1. Quaternions with respect to a Domain D. \dagger

The usual theory relates to quaternions $a_{1}+a_{2} i+a_{3} j+a_{4} k$ in which the coefficients a_{i} range independently over all real numbers or else over all complex numbers, and the units have the following multiplication table :

		i	j	k
	1	i	j	k
i	i	-1	k	$-j$
j	j	$-k$	-1	i
k	k	j	$-i$	-1

These conditions give the real quaternion system and the octonion system. \ddagger As an obvious generalization, the coefficients may range independently over all the elements of any domain D.

[^0]
§ 2. The Postulates.

A set of four ordered elements $a=\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$ of D will be called a quaternion a. The symbol $a=\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$ employed is purely positional, without functional connotation. Its definition implies that $a=b$ if and only if $a_{1}=b_{1}, a_{2}=b_{2}$, $a_{3}=b_{3}, a_{4}=b_{4}$.

Postulate I. If a and b are any two quaternions, then $s=\left[a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}, a_{4}+b_{4}\right]$ is a quaternion.

Definition. Addition of quaternions is defined by $a \oplus b=s$.
Postulate II. $0=[0,0,0,0]$ is a quaternion.
Postulate III. If 0 is a quaternion, then to any quaternion a corresponds a quaternion a^{\prime} such that $a \oplus a^{\prime}=0$.

Theorem 1. Quaternions form a commutative group under addition.

Postulate IV. a and b being any two quaternions, then $a \oplus b=p=\left[p_{1}, p_{2}, p_{3}, p_{4}\right]$ is a quaternion, where
$p_{1}=a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}-a_{4} b_{4}, \quad p_{3}=a_{1} b_{3}-a_{2} b_{4}+a_{3} b_{1}+a_{4} b_{2}$
$p_{2}=a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}, \quad p_{4}=a_{1} b_{4}+a_{2} b_{3}-a_{3} b_{2}+a_{4} b_{1}$,
if the p_{i} 's are in D.
Definition. The product of two quaternions is defined by $a \otimes b=p$.

Theorem 2. Multiplication is not commutative.
Theorem 3. Multiplication is distributive (right and left).
Theorem 4. Multiplication is associative.
To make quaternions four dimensional we add a fifth postulate :

Postulate V. If $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}$ are elements of D such that $\tau_{1} a_{1}$ $+\tau_{2} a_{2}+\tau_{3} a_{3}+\tau_{4} a_{4}=0$ for every quaternion a, then $\tau_{1}=0, \tau_{2}$ $=0, \tau_{3}=0, \tau_{4}=0$.

Theorem 5. There exist four quaternions $\epsilon_{i}=\left[a_{i 1}, a_{i 2}, a_{i 3}\right.$, $\left.a_{i 4}\right]$ such that $\left|a_{i j}\right| \neq 0$.

§ 3. Identification with Ordinary Quaternions.

The quaternion system as thus defined is holoedrically isomorphic with the quaternions of Hamilton, the coefficients belonging to the same domain D.

The quaternions $e_{1}=[1,0,0,0], e_{2}=[0,1,0,0], e_{3}=$ $[0,0,1,0], e_{4}=[0,0,0,1]$ form a four dimensional system since

$$
\left|\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right| \neq 0 .
$$

By postulate IV and the definition of multiplication, these quaternions e have the multiplication table

which, apart from symbolism, is the same as the table of § 1 .

§ 4. On the Independence of the Postulates.

If D is a domain admitting addition and subtraction, postulates II and III are redundant.

Aside from this case, postulates I-V are independent as shown by the following systems :
(I) Elements $0,[\pm 1,0,0,0],[0, \pm 1,0,0],[0,0$, $\pm 1,0],[0,0,0, \pm 1]$.
(II) D is the domain of positive integers.
(III) Set (II) with 0 added.
(IV) D is the domain of complex numbers, the a_{i} being pure imaginaries.
(V) a_{1} arbitrary ; other a 's $=0$.

The University of Colorado,
Boulder, Colo.,
February, 1906.

[^0]: *See Dickson, "On hypercomplex number systems," Transactions Amer. Math. Society, vol. 6 (1905).
 \dagger A domain consists of any class of elements.
 \ddagger Octonions may be considered as quaternions with complex coefficients.

