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X / ( \ — 1). Hence 

(1) ? * 0 , 1, X, 1 - X , ^ i , ^ L - , * = ± (X + 0 ,1) . 

Here the six functions of X are the six elements of the cross-
ratio group, and each differs from 0 and 1. Hence equalities 
arise only when X = — 1, 2, or J, or when X2 — X + 1 = 0. 

When JÜ-. , Xn, Xn Cl/I d distinct, qxx + x2 is six valued only in the 
following cases : (i) one of the x's is an arithmetical mean be
tween the other two, with q 4= 0, 1, — 1, 2, | ; (ii) Hx* = ^XjXk, 
with q 4= 0, 1, X, 1/X {where X2 — X + 1 = 0) ; (iii) neither of 
the relations on the x's holding, with q not equal to one of the 
eight distinct values (1). 

I t may now be readily shown that there exist six valued 
linear functions of the roots x. of a cubic in the GF\_pn~\ when 
pn > 8 ; when pn = 7 ; and when pn = 5 or 8, with the x. not 
all in the GF[p^]. 

5. In conclusion it may be remarked that the Galois theory 
as presented in Weber's Algebra may readily be extended to 
apply to modular fields, provided his argument on page 500 (of 
volume 1 of the second edition) be replaced by that in § 2 above. 

THE UNIVERSITY OF CHICAGO, 
July, 1906. 

N O T E ON T H E V A R I A T I O N O F T H E D E F I N I T E 
I N T E G R A L . 

BY MR. N. J. LENNES. 

(Head before the Chicago Section of the American Mathematical Society. 
April 14, 1906.) 

A function is said to be of limited variation on an interval 
ah if the set of sums 

[g|/(»«)-/(*m)l] 
is bounded for the set of all partitions of ab. The points 
a = x0, xv x2 • • -, xn_v xn = b of each partition are ordered on 
the interval according to the subscripts. The least upper 
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bound of this set of sums is denoted by Vb
af(x) and is called 

the variation of f(x) on ab. We consider the variation of 

f(x)dx 

on an interval ab, where 
/*• 

f(x)dx 

'> 

J 
is a function of the upper limit of integration. Denote this 
variation by 

r» fxf(x)dx. 

THEOREM I . Iff(x) does not change sign on ab then 

VI ff(x)dx 
exists on ab and 

VI Cf{x)dx = f | ƒ (s) | dx. 

Proof: The theorem is obvious since for every partition of 
ab consisting of n + 1 points 

n—l I /*Xi+\ I /»& 

]C I f(x)dx = I \f(x) | dx. 

For convenience of reference a definition of the definite integral 
is inserted. Let ab be an interval upon which a function 
f(x) is defined, single valued and bounded. Let 7r5 stand for 
any partition of ab consisting of the points 
xn = b such that A ^ = xl — a, A2x = x2 — xv • • •, Anx 
= b — ajn_p each interval being numerically less than or equal 
to 8. Let £j, £2, . • -, £n be any points of the intervals x0xv 

xxx2, • • •, xn__x xn respectively and let 
n 

ss =Mi)A1x +/<&)A2* + ... + Mn)\x = E/(IJV-

If the many valued function 8B of S approaches a single limit
ing value as 8 approaches zero, then 
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0=0 Ja 

S^B represents the sum 88 over the interval ab. 
LEMMA I . The function Ss in the definition of the definite 

integral approaches its limit uniformly with respect to x, i. e.y for 
every e there exists a Be such that 

i *^*i 

for every S*fie and for every pair of points xx and x2 on ab. 
Proof : Since by hypothesis 

JL818= ff(x)dx, 
0=0 J a 

here exists for a given € a Se/2 such that 

(1) I (%)cfo-^aj< | 

for every S*8e/2. Then for any pair of points xv x2 on ab 

(2) \nMdx-S?S.n+ rMdx-Sz8.A 
I *Ja %)'xi 

f(x)dx - 8b
xBe/2 

Since f(x) is integrable on axl and œ2è, it follows that there 

<e/2. 

exists a S'e/2 for accx and a S"/2 for cc2& such that 

(3) I fVo»)*» - w * + f /(»)&> - v . ; , 
Then from (2) and (3) 

Cf(x)dx-S*£lh 
I VX\ 

< € . 

Hence 8e/2 is the Se required by the lemma.* 
Definition : The difference between the least upper and the 

greatest lower bound of a function on an interval is the oscil
lation of the function on that interval. 

* If (î62 is so chosen that ô€/2 r== ôe/2 and de/2 = ^e/2, the argument is a 
little more obvious, though this restriction is not necessary. 
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LEMMA I I . If the oscillation of a function on an interval ab 
is less than e/2 then for any two partitions TT and TT' of ab 

EM-I/(£)H2>M*;)I < e|6—a| 

when n and n' are the numbers of intervals on the partitions TT 
and TT' respectively. 

Proof : Let B be any value of f(x) on a b. Then for any 
interval xjci+1 of the partition TT 

Hence 

(i) 

| / ( | i) | . |A ix|- | /3 | . |A i .x | ' <|A*. 

\±\Ap\.\Mt)\-\/3\.\b-a\ 
1 £ = 1 

<^\b — a 

Similarly for any interval x[x[+1 of the partition TT' 

\A?<)±>-ft'K*\<ï\*>\ 
Hence 

and 

(2) 

£/(£)A^-/3-(ó-a) < 2 \b — a\ 

<^\b-a\. Hf{t»\-m-\b-*\ 
From (1) and (2) we have 

n nf I 

E I A / B H / ^ I - I Z A ; » / ^ ) ! <e|6-a| . 

f(x)dx exists, then Vb
a I f(x)dx exists 

and 

Proof: SinceHfor any two values of x, xl and x2 on ab 

f(x)dx \ si \f(x)\dx 
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and since by a well-known theorem 

I dx 

exists if 

/»*2 

I IX») I 

I f(x)doc 

exists, it follows from (1) and Theorem I that 

f(x)dx 

exists and that 

(2) n f / ( ^ ^ : f\/(x)\dx. 
I t remains to show that the sign < in (2) is impossible. 

Since f(x) is integrable on ab it follows by a well known 
theorem that for any pair of positive numbers a and X there 
exists a partition TT such that the sum of the intervals on which 
the oscillation of ƒ (x) is greater than a is less than X. 

For a preassigned e let X = e/M, where M is the difference 
between the least upper and the greatest lower bound of f(x) 
on ab. Let a = e/41 b — a |. Denote by I the set of intervals 
on ab on which the oscillation is less than cr and by If the 
complementary set of intervals. Let n be the number of inter
vals in I . By Lemma I there exists a 8 such that 

I fx2 

(3) f(x)dx-
I *J x\ 

S«8 «1 <2n 

for every pair of points xx and x2 on ab and for every S^S. 
Let xv x2 be the extremities of a segment of the set ƒ. By 
Lemma I I 

(4) | |s3s| - K - x2\ • |/(|2)| | < 2 ^ ! • K - x2\. 
Denoting the integrals on the segments of the set I by 

j f(x)dx, 
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the lengths of the segments by Ai9 and the sums S8 on the 
segments of I by #$+1, we have from (4) 

i j=2n—l n 
< 

where 2n — 1 is the number of extremities of the segments of 
I and where j takes only odd values. 

Then from (3) 

since if 

then 

Hence 

Since 

e 
2n' 

1 2n—l n . /» 

Eis r 5 i - r A*)* 
j ~ \ i—l I Ji 

I rx* I 
f(x)dx-S%S < 

I J x\ I 
11 rX2 i 1 

^ajJdasU |S|gS| < 
I ' Jx\ ' | 

I » n \ C* 

E Mƒ&)! - i A»W 
I f,=t £=1 ' Ji 

n' /* 

LIA;|/(^)I= \\A»)\* 
S=(W=1 Ji 

2' 

€ . 

and since e is arbitrary it is evident that the least upper bound 
of 

n' I r* I 

Ya I f{X)dx 

for the set of all partitions of ƒ cannot be less than 

Z I IA*)\d» 
i=i Ji 

J f(x)dx 

(where 

denotes the integral on an interval formed by partitioning an 
interval of ƒ.) 
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Since the sum of the lengths of the interval on which the 
oscillation is greater than cr is less than X = ejM and since by 
a known theorem 

X) I \f(x)\dx<\'3£= e 

(where 

J f\(x)dx 

denotes the integral on a segment of J ' ) it follows from the 
arbitrary character of e that the least upper bound of 

r <A I rxm 11 

L i=0 I Jxi I J 

for the set of all partitions of a 6 cannot be less than 

| ƒ (03) | dx, 

which proves the theorem. 
Definition : The length of a curve represented by the equa

tion y =f(x) on an interval a 6 is the least upper bound of the 
set of sums 

[ g Axi - xi+if + (Vi - ^iT2 J 

for the set of all partitions a = xv x2) • • •, xn__i9 xn = b of the 
interval ab, where y. corresponds to x. by the functional corre
spondence y =f(x). 

THEOREM I I I . If on the interval ab and on every subinterval 
of ab the functions J[(x) andf2(x) are o^ equal variation then the 
curves represented by y =fl(x), and y =f~(x) are of equal length 
on the interval ab. 

Proof: Consider any partition IT ofab consisting of the points 
x.(i = 0, • • -, n). Then 

± V{xt - xi+,y + (/(*0 - ƒ («w))2 

is one sum of the set of sums whose least upper bound is the 
length of the curve y =f(x) on ab. 

%)a 
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By hypothesis fx(x) and f2(x) are of the same variation on any 
interval x.xi+l of TT. Obviously the variation of f^(x) on xi xi+1 

is equal to or greater than \fx{x?) — f(xi+1) |. Let e be any 
preassigned positive number and let e = ejn where n is the 
number of interval in the partition 7r. Then there is a partition 
7T\ of xi x4+x consisting of the points x0 = x.9 x'2> • • -, as', • • -9x'n, 
= xi+l such that 

(1) \fi(*ù - / i ( » m ) I - t \m) -f2(xj+1)\ < 6'. 
i-o 

By means of a broken line whose segments are equal in 
length to the lengths of the segments connecting the points 
(xj>f£xjÙ a n d (xj+v A(xj+Ù) connect the point (xvf2(xi)) with 
a point (x.+v y^) on the line x = xi+l in such manner that the 
slopes of these segments are, say, all positive. Then by (1) 

(2) \f^) ~ fx(xi+l) | - \flx,) -Vl\< e'. 

Hence obviously 

(3) V{xt - xi+1f + [ f M -f&^JÏ* 
nf 

- E Vfy - xJ+lf+ [ ƒ > , ) - /2(a, .+ 1)] » < e ' . . . . 

Let 7r", consisting of the points xx = a, x2, • • -, xw • • -, xn„ = 6, 
be the partition of ab containing all the points of the parti
tions IT', of the intervals x.xi+v and let n" be the number of in
tervals in this partition. Then from (3) 

(4) t V(xt- xi+ly + [./;(*,.) -f^jy 

~ 5 V(xh - xk+l)
2+ lf2(xJe) -f2(x7e+l)Y<e'n = e . . . . 

By a well known theorem the lengths on ab of the curves 
y ^zf^x) and y =f2(x) both exist, since the functions are of 
limited variation. Moreover, it follows from (4) that the 
length of the curve y ~f2(x) cannot be less than that of y =fx(x), 
€ being arbitrary. In the same manner it is shown that the 
length of the curve y *=fx(x) cannot be less than the length of 
the curve y =f2(x). Hence the curves are of equal length and 
the theorem is proved. 
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Theorems I I and I I I yield the following interesting 
COROLLARY. Iff(x) is such that 

I f(x)dx=f(x)-f(a) 

on ab then the length on ab of the curve y =f(x) can be found 
by finding the length of the curve 

X X 

\f\x)\d,x 
on this interval. 

Proof: By Theorem I I the curves 

J r*x r*x 

I f(x)dx=f(x)~f(a) and y = J \f'(x)\dx 
have the same variation on ab and on every subinterval of ab, 
whence by theorem I I I their lengths are equal. 

This corollary reduces the problem of finding the length of 
a curve of the class specified in the corollary to the finding of 
the length of a non-oscillating curve. 

We now use theorem I I to give a fresh proof of a theorem 
on improper definite integrals. 

Definition: A function is integrable at a point x0 if there 
exists an interval containing x0 as an interior point on which 
f(x) is properly integrable. (A function is properly integrable 
on an interval only in case it is bounded on that interval.) 

Consider a function f(x) which is integrable at every point 
of the interval ab except at a set of points [ P ] which is of 
content zero.* 

Let [ / ] be any finite set of non-overlapping intervals on 
ab such that no point of [P ] lies on an interval of [ ƒ ] . Then 
the integral of f(x) exists properly on every interval of [ I ] , 
Denote by 

Jal 
f(x)dx 

ii 

the sum of the integrals of f(x) on the intervals of [ / ] . 

* A set of points [P] is of content zero if for every positive number e there 
exists a finite set of intervals [ƒ'] such that every point of [P] lies on at 
least one interval of [/ ' ] and further suoh that the sum of the lengths of the 
intervals of [J7] is less than e. 
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Denote by m [ J ] the sum of the lengths of these intervals and 
let I) = \a - 6|. 

If the limit 
'*& 

L f Ax)d* 
exists and is finite, this limit is said to be the improper definite 
integral of f(x) on ab. 

THEOREM I V . The improper definite integral regarded as a 
function of the upper limit of integration is of limited variation 
on any interval ab. 

Proof : Since by hypothesis the improper definite integral of 
f(x) exists on ab it follows that there exists an M such that for 
every set of interval [1 ] 

(1) I Çf(x)d; 
\J al 

b 

\<M. 
a! 

If the theorem fails to hold, i. e.} if for every M' there is a 
partition IT of ab such that 

(2) £ f J{x)da >M', 

then for a certain subset x.xjJrl of the set of interval x{xi+l 

(3) Z f(x)d* 
J=» Jx, 

M' 

(The integrals in (3) are improper definite integrals.) Since 
the improper definite integral exists on each of the intervals 
Xj xJ+l there exists a set of segments [ I ' ] such that 

(4) f f(x)é * , M' 

'al' Z 

If M = 2 i f then (4) contradicts (1). Hence the theorem is 
proved. 

THEOREM V . If the improper definite integral of f(x) exists 
on the interval ab then the improper definite integral of \f(x)\ 
exists on ab. 
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Proof : By theorem I V 

| f(x)doc 

is of limited variation on ab. Hence there exists a number 
M such that for every set of intervals [ J ] 

But by Theorem I I , 

which proves the theorem.* 

CHICAGO, 
July 17, 1906. 

A NOTE ON TRANSITIVE GROUPS. 

BY DR. W. A. MANNING. 

(Read before the American Mathematical Society, September 3, 1906.) 

T H R E E unconnected topics in the theory of transitive sub
stitution groups are touched on in this note. 

THEOREM I . The largest subgroup of a transitive group G 
of degree n, in which a subgroup H leaving fixed m (0 < m < n) 
letters is invariant, has as muny transitive constituents in these m 
letters as there are different conjugate sets in Gx (a subgroup of G, 
that leaves one of the m letters fixed) which, under the substitutions 
of G, enter into the complete set of conjugates to which H belongs. 
Moreover, the degree of each of these constituents is proportional 

*For a general discussion of the improper definite integral see E. H. 
Moore, "Concerning Harnack's theory of improper definite integrals." 
Transactions Amer. Math. Society, volume 2, pp. 296-330, and pp 459-475 
same volume. See also references given in this paper by Professor Moore. 
For a proof of Theorem V. of the present note see Jordan, Cours d'analyse, 
éd. 2, vol. 2 (1894), pp. 46 ff. 


