angles. This approximation is then made closer by using the values of f at points where $A B$ cuts the curve $f(x, y)=$ const. If the second approximation is not close enough, the process is repeated.
23. Herr Wagenmann correlates successive steps in the theory of evolution with series $-\infty, \cdots-2,-1,0,1,2, \cdots, \infty$ along three coördinate axes developing successively the ideas of motion, mass, the nebular hypothesis and evolution of living organisms and of civilization. He finds that his method leads to a monistic philosophy - in fact to a pan-monism.

A. B. Frizell.

Göttingen,
November, 1906.

A NEW APPROXIMATE CONSTRUCTION FOR π.

BY MR. GEORGE PEIRCE.
Given a circle with radius r and center at O; to find an approximate construction for πr.

Draw the diameter $A O B$ and the tangent $B C$ at right angles to it. Describe the arc $O D C$ with radius r and center at B.

Draw the line $A C$ cutting the arcs $O D C$ and $A B$ at D and J; also draw the line $B D E$ through B and D cutting the given circle at E. Then $A D+3 D E=\pi r$ approximately.

Proof:

$$
\begin{aligned}
& A C=\sqrt{\left(A B^{2}+B C^{2}\right)}=r \sqrt{5} \\
& A D=\frac{A O \cdot A H}{A C}=\frac{r \cdot 3 r}{r_{\sqrt{5}}}=\frac{3}{5} \sqrt{5} r, \\
& J C=\frac{B C^{2}}{A C}=\frac{r^{2}}{r_{\sqrt{5}}}=\frac{1}{5} \sqrt{5} r \\
& D J=A C-A D-J C=\frac{1}{5} 1 \overline{5} r, \\
& D E=\frac{A D \cdot D J}{B D}=\frac{\frac{3}{5} \sqrt{5} r \cdot \frac{1}{5} \sqrt{5} r}{r}=\frac{3}{5} r, \\
& A D+3 D E=\frac{3}{5} \sqrt{5} r+3\left(\frac{8}{5} r\right)=3.141641 r .
\end{aligned}
$$

By making use of the fact that in the triangle $A B E$

$$
A E=\sqrt{\left(A B^{2}-B E^{2}\right)}=\sqrt{(2 r)^{2}-\left(\frac{8}{6} r\right)^{2}}=\frac{6}{6} r=2 D E
$$

we can obtain a single line of the same length as $A D+3 D E$. We can therefore draw the arc $E G$ with radius $D E$ and center at D and the arc $E F$ with radius $A E$ and center at A. Then $A D+3 D E=A D+A E+D E=A D+F A+D J=F G$.

There are many other approximate constructions for πr. A summary of those that have been worked out according to the method of geometrography is given below. A, B, C and D are to be found in the Bulletin for January, 1902, page 137 ; E is in Cantor's Geschichte der Mathematik, volume 3, page 23; F is the construction given above.

	Author.	Δ	Without Square. S. E. Lines. Circles.					With Square. E. Lines. Circle		
A	G. Peirce	$+.0012$	22	14	4	4	17	11	4	2
B	Kühn	+. 0047	14	9	2	3	14	9	2	3
C	Lemoine	+. 0030	21	13	2	6	20	13	2	5
D	Pleskot	-. 00016	24	16	3	5	24	16	3	5
E	Kochansky	-. 000060	33	20	6	7	23	13	6	4
F	G. Peirce	$+.000048$	24	15	4	5	19	12	4	3

Δ is the difference between the mechanically exact construction and π. S stands for simplicity and E for exactitude. For the technical meanings of these two words see the article in the Bulletin for January, 1902. The lower these numbers are, the better the construction.

