$$
\lambda=\frac{x\left(t_{2}\right)-x\left(t_{1}\right)}{t_{2}-t_{1}}, \quad \mu=\frac{y\left(t_{2}\right)-y\left(t_{1}\right)}{t_{2}-t_{1}} \text { when } t_{1} \neq t_{2}
$$

and

$$
\lambda=\frac{d x_{1}}{d t}, \quad \mu=\frac{d y_{1}}{d t}, \quad \text { when } \quad t_{1}=t_{2}
$$

Define the positive sense along this line to be the direction of increasing ρ. This is uniquely defined for any pair of points in the interval $\left(t_{0}, T\right)$ since λ and μ are unchanged by interchanging t_{1} and t_{2}.

Define an angle α as follows:

$$
\sin \alpha=\epsilon k \mu, \quad \cos \alpha=\epsilon k \lambda, \quad k=\left(\lambda^{2}+\mu^{2}\right)^{-\frac{1}{2}} .
$$

Then α is an infinitely many-valued function of t_{1} and t_{2}, its values for any given pair of values of t_{1} and t_{2} differing by multiples of 2π. If one of these values α^{\prime} be assigned to a particular pair $t_{1}{ }^{\prime}, t_{2}{ }^{\prime}$, then from the possible values of α one and only one single valued continuous function can be chosen which takes the value α^{\prime} at $t_{1}^{\prime}, t_{2}^{\prime}$.*

University of Missouri,
November 5, 1906.

ON EULER'S ϕ-FUNCTION.

BY PROFESSOR R. D. CARMICHAEL.

(Read before the American Mathematical Society, December 28, 1906.)
The object of the present note is the demonstration of certain very elementary propositions concerning Euler's ϕ-function of a number.
I. The relation $\phi(m)=n$, a given number, is never uniquely satisfied for any given value of n. That is, there is always more than one value of m for every possible value of n.

If any solution is $m=$ an odd number, then the given relation is satisfied by $2 m$ also. Likewise, if m is twice an odd number, we may show that $m / 2$ will also satisfy the relation.

[^0]Hence, if there is a unique solution, m is a multiple of 4 ; say $m=4 \mu$. Now n is even ; say $n=2 \nu$. Then we have

Hence

$$
\phi(4 \mu)=2 \nu
$$

$$
\phi(2 \mu)=\nu .
$$

Then in a manner similar to the above we may show that μ and ν are both even. By continuing the process step by step we are able to show that a unique solution cannot exist unless both m and n are powers of 2 . It remains therefore to show that this cannot give a unique solution. Let $n=2^{a}$. Then

$$
\phi(m)=2^{a}
$$

is satisfied not only by $m=2^{a+1}$ but also by $m=2^{a}\left(2^{b}+1\right)$ $\left(2^{c}+1\right) \cdots$ in every way in which a, b, c, \cdots can be so chosen that $a+b+c+\cdots=\alpha+1, a \neq 0$; or $b+c \cdots=\alpha, a=0$; and $2^{b}+1,2^{c}+1, \cdots$ shall be different primes. If $\alpha \geqq 3$, one such solution is always $a=\alpha-2, b=1, c=2$. An examination for the smaller values of α shows that no unique solution exists in these cases. Hence the proposition
II. The equation $\phi(m)=2^{n}$ has just $n+2$ solutions when $n+2 \leqq 33$; but just 33 solutions for $n=$ any number from 32 to 255 .

An odd solution evidently requires

$$
m=\left(2^{\alpha}+1\right)\left(2^{\beta}+1\right)\left(2^{\gamma}+1\right) \cdots,
$$

where $\alpha+\beta+\gamma+\cdots=n$ and each factor is prime. Since $2^{x}+1$ is prime * for $x=1,2,4,8,16$, but not for $x=32,64,128$ nor any value of x not of the form 2^{p}, it is clear that $\phi(m)=2^{n}$ has one and but one odd solution for every value of n up to $n=31$. Also twice every even value of m which satisfies $\phi(m)=2^{n}$ will satisfy the equation when the second member becomes 2^{n+1}. Hence the number of solutions is increased by one when n is so increased up to $n=31$; but beyond that up to $n=255$ the number of solutions remains constant; for there is then no solution except those given by twice each solution for the preceding value of n. Up to $n=31$ it is easy to see that the number of solutions is $n+2$; then from this point onward to $n=255$ the number remains constant and is 33 .

[^1]It will be noticed that the first value of 2^{n} to which there corresponds no odd solution in n is 2^{32}. This is the smallest value of $\phi(m)$ known to the writer to have no odd solution in m.
III. Corollary. The equation $\phi(m)=2^{n}$ has (only) one odd solution when $n \leqq 31$; otherwise no odd solution at all up to $n=255$. Also it has evidently no other odd solution except for such values of n as make $2^{n}+1$ prime.
IV. All the solutions of the equation $\phi(m)=4 n-2, n \neq 1$, are of the form p^{a} and $2 p^{a}$, where p is a prime of the form $4 s-1$.

Now $m \neq 4$. Then if m contains the factor 4 it is evident that the equation is not satisfied. Neither is it satisfied if m contains two odd primes. Therefore the only values left are of the form p^{a} and $2 p^{a}$. Moreover p must be a prime of the form $4 s-1$; for otherwise the equation is not satisfied. (There may evidently be more than one p which furnishes such a solution. A case in point is $\phi(m)=18$, which has the solutions $m=19$, 27, 38, 54.)
V. If p is of the form $4 s-1$ and $\phi(m)=p^{\alpha}(p-1)$ has but the two solutions $m=p^{a+1}, 2 p^{a+1}$, then the relation $\phi(m)=$ $2 p^{a}(p-1)$ has an odd solution. (α belongs to the series 0,1 , $2, \cdots$.)

For one solution of the latter is $m=4 p^{a+1}$. There is no other solution in which m is a multiple of 4 ; for then there would correspond to that a third solution for $\phi(m)=p^{a}(p-1)$. But $\phi(m)=2 p^{a}(p-1)$, by proposition I, has more than one solution. Hence it is easy to see that it has both an odd solution and another twice that one.

Presbyterian College,
Anniston, Ala.

[^0]: * Cf., e. g., Stolz, Differential-Rechnung, vol. 2, p. 15-20.

[^1]: * See Bulletin, June 1906, p. 449.

