1907.]

$$\lambda = \frac{x(t_2) - x(t_1)}{t_2 - t_1}, \qquad \mu = \frac{y(t_2) - y(t_1)}{t_2 - t_1} \quad \text{when} \quad t_1 \neq t_2$$

and

$$\lambda = \frac{dx_1}{dt}, \qquad \mu = \frac{dy_1}{dt}, \qquad \text{when} \quad t_1 = t_2.$$

Define the *positive sense* along this line to be the direction of increasing ρ . This is uniquely defined for any pair of points in the interval (t_0, T) since λ and μ are unchanged by interchanging t_1 and t_2 .

Define an angle α as follows :

$$\sin \alpha = \epsilon k \mu$$
, $\cos \alpha = \epsilon k \lambda$, $k = (\lambda^2 + \mu^2)^{-\frac{1}{2}}$.

Then α is an infinitely many-valued function of t_1 and t_2 , its values for any given pair of values of t_1 and t_2 differing by multiples of 2π . If one of these values α' be assigned to a particular pair t_1' , t_2' , then from the possible values of α one and only one single valued continuous function can be chosen which takes the value α' at t_1' , t_2' .*

UNIVERSITY OF MISSOURI, November 5, 1906.

ON EULER'S ϕ -FUNCTION.

BY PROFESSOR R. D. CARMICHAEL.

(Read before the American Mathematical Society, December 28, 1906.)

THE object of the present note is the demonstration of certain very elementary propositions concerning Euler's ϕ -function of a number.

I. The relation $\phi(m) = n$, a given number, is never uniquely satisfied for any given value of n. That is, there is always more than one value of m for every possible value of n.

If any solution is m = an odd number, then the given relation is satisfied by 2m also. Likewise, if m is twice an odd number, we may show that m/2 will also satisfy the relation.

^{*} Cf., e. g., Stolz, Differential-Rechnung, vol. 2, p. 15-20.

Hence, if there is a unique solution, m is a multiple of 4; say $m = 4\mu$. Now n is even; say $n = 2\nu$. Then we have

Hence
$$\begin{split} \phi(4\mu) &= 2\nu\\ \phi(2\mu) &= \nu. \end{split}$$

Then in a manner similar to the above we may show that μ and ν are both even. By continuing the process step by step we are able to show that a unique solution cannot exist unless both m and n are powers of 2. It remains therefore to show that this cannot give a unique solution. Let $n = 2^{\alpha}$. Then

$$\phi(m) = 2^{\alpha}$$

is satisfied not only by $m = 2^{a+1}$ but also by $m = 2^{a}(2^{b} + 1)$ $(2^{c} + 1) \cdots$ in every way in which a, b, c, \cdots can be so chosen that $a + b + c + \cdots = a + 1$, $a \neq 0$; or $b + c \cdots = a$, a = 0; and $2^{b} + 1$, $2^{c} + 1$, \cdots shall be different primes. If $a \ge 3$, one such solution is always a = a - 2, b = 1, c = 2. An examination for the smaller values of a shows that no unique solution exists in these cases. Hence the proposition

II. The equation $\phi(m) = 2^n$ has just n + 2 solutions when $n + 2 \leq 33$; but just 33 solutions for n = any number from 32 to 255.

An odd solution evidently requires

$$m = (2^{\alpha} + 1)(2^{\beta} + 1)(2^{\gamma} + 1) \cdots,$$

where $\alpha + \beta + \gamma + \cdots = n$ and each factor is prime. Since $2^x + 1$ is prime * for x = 1, 2, 4, 8, 16, but not for x = 32, 64, 128 nor any value of x not of the form 2^p , it is clear that $\phi(m) = 2^n$ has one and but one odd solution for every value of n up to n = 31. Also twice every even value of m which satisfies $\phi(m) = 2^n$ will satisfy the equation when the second member becomes 2^{n+1} . Hence the number of solutions is increased by one when n is so increased up to n = 31; but beyond that up to n = 255 the number of solutions remains constant; for there is then no solution except those given by twice each solution for the preceding value of n. Up to n = 31 it is easy to see that the number of solutions is n + 2; then from this point onward to n = 255 the number remains constant and is 33.

 $\mathbf{242}$

^{*}See BULLETIN, June 1906, p. 449.

1907.]

It will be noticed that the first value of 2^n to which there corresponds no odd solution in m is 2^{32} . This is the smallest value of $\phi(m)$ known to the writer to have no odd solution in m.

III. COROLLARY. The equation $\phi(m) = 2^n$ has (only) one odd solution when $n \leq 31$; otherwise no odd solution at all up to n = 255. Also it has evidently no other odd solution except for such values of n as make $2^n + 1$ prime.

IV. All the solutions of the equation $\phi(m) = 4n - 2$, $n \neq 1$, are of the form p^a and $2p^a$, where p is a prime of the form 4s - 1.

Now $m \neq 4$. Then if *m* contains the factor 4 it is evident that the equation is not satisfied. Neither is it satisfied if *m* contains two odd primes. Therefore the only values left are of the form p^a and $2p^a$. Moreover *p* must be a prime of the form 4s - 1; for otherwise the equation is not satisfied. (There may evidently be more than one *p* which furnishes such a solution. A case in point is $\phi(m) = 18$, which has the solutions m = 19, 27, 38, 54.)

V. If p is of the form 4s - 1 and $\phi(m) = p^{\alpha}(p-1)$ has but the two solutions $m = p^{\alpha+1}$, $2p^{\alpha+1}$, then the relation $\phi(m) = 2p^{\alpha}(p-1)$ has an odd solution. (α belongs to the series 0, 1, 2,)

For one solution of the latter is $m = 4p^{\alpha+1}$. There is no other solution in which *m* is a multiple of 4; for then there would correspond to that a third solution for $\phi(m) = p^{\alpha}$ (p - 1). But $\phi(m) = 2p^{\alpha}$ (p - 1), by proposition I, has more than one solution. Hence it is easy to see that it has both an odd solution and another twice that one.

PRESBYTERIAN COLLEGE, ANNISTON, ALA.