Thus the transpositions (12), (23), $\cdots,(78)$ correspond to (4), (5), $\cdots,(10)$, respectively. In the standard notations for abelian substitutions the latter are, respectively,

$$
\begin{array}{ccccc}
M_{1} N_{31} Q_{31}, & M_{3} N_{23} Q_{23}, \quad M_{2}, \quad M_{3} Q_{31} N_{23} R_{13} Q_{23}, \quad M_{1}, \\
M_{3} R_{31} Q_{31}, \quad M_{2} N_{32} Q_{32} .
\end{array}
$$

The University of Chicago,
August, 1906.

DOUBLE POINTS OF UNICURSAL CURVES.

by professor J. edmund wriaht.

The coordinates of a unicursal curve may be expressed as rational functions of a parameter. If we assume the curve to be of order n and use non-homogeneous coordinates, we have

$$
x=a(\lambda) / c(\lambda), \quad y=b(\lambda) / c(\lambda),
$$

where a, b, c are polynomials of order n in the parameter λ. For the double points two values of the parameter give the same values of x and y, and the usual method for their determination consists in finding pairs of values of λ and μ that satisfy the equations

$$
a(\lambda) / c(\lambda)=a(\mu) / c(\mu), \quad b(\lambda) / c(\lambda)=b(\mu) / c(\mu) .
$$

After elimination of μ from these equations and division ot the result by certain extraneous factors, an equation of order $(n-1)(n-2)$ in λ is obtained, and the roots of this equation combine in pairs to give the parameters of the $\frac{1}{2}(n-1)(n-2)$ double points. The process of solution however involves the solution of an equation of order $(n-1)(n-2)$.

Suppose now that a, b, c are polynomials in λ with real coefficients, i. e., suppose the curve real, and write $\lambda+i \mu$ for λ. Let a be $A\left(\lambda, \mu^{2}\right)+i \mu A^{\prime}\left(\lambda, \mu^{2}\right)$ and similarly for b and c. It is clear that $\lambda+i \mu$ gives for (x, y) the value

$$
\left(\frac{A+i \mu A^{\prime}}{C+i \mu C^{\prime}}, \quad \frac{B+i \mu B^{\prime}}{C+i \mu C^{\prime}}\right)
$$

and that $\lambda-i \mu$ gives

$$
\left(\frac{A-i \mu A^{\prime}}{C-i \mu C^{\prime}}, \quad \frac{B-i \mu B^{\prime}}{C-i \mu C^{\prime}}\right)
$$

These values are the same if

$$
\frac{A^{\prime} C-A C^{\prime}}{C^{2}+\mu^{2} C^{\prime 2}}=0, \quad \frac{B^{\prime} C-B C^{\prime}}{C^{2}+\mu^{2} C^{2}}=0
$$

It is at once clear that the common values of λ, μ satisfying $A^{\prime} C-A C^{\prime}=0, B^{\prime} C-B C^{\prime}=0$ give the parameters $\lambda+i \mu$, $\lambda-i \mu$ of the double points, and in addition the values of λ, μ which make $C=0, C^{\prime}=0$. Also, a real pair of values of λ, μ corresponds to a real isolated double point, whilst a real crunode is given by λ real and μ purely imaginary. In either case μ^{2} is real and the two above equations are in λ and μ^{2}; hence each real pair of values of λ, μ^{2} gives a real double point and each imaginary pair an imaginary double point. For a crunode μ^{2} is negative, and for an isolated point it is positive.

The number of intersections of C and C^{\prime} is $n(n-1)$, whilst the number of intersections of $A^{\prime} C-A C^{\prime}$ and $B^{\prime} C-B C^{\prime}$ is apparently $(2 n-1)^{2}$. We shall now show that this number is in reality much less.

Suppose that

$$
a(\lambda)=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\cdots, \quad b(\lambda)=b_{0} \lambda^{n}+b_{1} \lambda^{n-1}+\cdots
$$

$$
c(\lambda)=c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+\cdots
$$

and write

$$
\lambda+i \mu=r(\cos \theta+i \sin \theta)
$$

Then

$$
\begin{aligned}
& A^{\prime} C-A C^{\prime}=\left\{\left[a_{0} r^{n} \sin n \theta+a_{1} r^{n-1} \sin (n-1) \theta+\cdots\right]\right. \\
& \times\left[c_{0} r^{n} \cos n \theta+c_{1} r^{n-1} \cos (n-1) \theta+\cdots\right] \\
&-\left[c_{0} r^{n} \sin n \theta+c_{1} r^{n-1} \sin (n-1) \theta+\cdots\right] \\
&\left.\times\left[a_{0} r^{n} \cos n \theta+a_{1} r^{n-1} \cos (n-1) \theta+\cdots\right]\right\} \div r \sin \theta \\
&=\left(a_{0} c_{1}-a_{1} c_{0}\right) r^{2 n-2}+\left(a_{0} c_{2}-a_{2} c_{0}\right) r^{2 n-3} \frac{\sin 2 \theta}{\sin \theta} \\
&+\left[\left(a_{0} c_{3}-a_{3} c_{0}\right) \frac{\sin 3 \theta}{\sin \theta}+\left(a_{1} c_{2}-a_{2} c_{1}\right)\right] r^{2 n-4} \\
&+\left[\left(a_{0} c_{4}-a_{4} c_{0}\right) \frac{\sin 4 \theta}{\sin \theta}+\left(a_{1} c_{3}-a_{3} c_{1}\right) \frac{\sin 2 \theta}{\sin \theta}\right] r^{2 n-5} \\
&+\cdots, \text { etc., }
\end{aligned}
$$

$$
\begin{aligned}
= & \left(a_{0} c_{1}-a_{1} c_{0}\right)\left(\lambda^{2}+\mu^{2}\right)^{n-1}+\left(a_{0} c_{2}-a_{2} c_{0}\right) 2 \lambda\left(\lambda^{2}+\mu^{2}\right)^{n-2} \\
& +\left[\left(a_{0} c_{3}-a_{3} c_{0}\right)\left(3 \lambda^{2}-\mu^{2}\right)+\left(a_{1} c_{2}-a_{2} c_{1}\right)\left(\lambda^{2}+\mu^{2}\right)\right]\left(\lambda^{2}+\mu^{2}\right)^{n-3} \\
& +\left[\left(a_{0} c_{4}-a_{4} c_{0}\right)\left(4 \lambda^{3}-4 \lambda \mu^{2}\right)+\left(a_{1} c_{3}-a_{3} c_{1}\right) 2 \lambda\left(\lambda^{2}+\mu^{2}\right)\right]\left(\lambda^{2}+\mu^{2}\right)^{n-3}
\end{aligned}
$$

plus terms of order lower than $2 n-5$.
Hence $A^{\prime} C-A C^{\prime}$ is of order $2 n-2$ and has a multiple point of order $n-1$ at each of the circular points at infinity. Similarly $B^{\prime} C-B C^{\prime}$ has multiple points at the circular points. The number of other intersections of these two curves is therefore

$$
(2 n-2)^{2}-2(n-1)^{2}=2(n-1)^{2}
$$

Of these $n(n-1)$ are accounted for, and there remain

$$
2(n-1)^{2}-2(n-1)=(n-1)(n-2)
$$

Now the equations contain only even powers of μ, and therefore if λ, μ be one intersection, $\lambda,-\mu$ is another. If μ^{2} be eliminated from them, and the extraneous polynomial in λ arising from $C=0, C^{\prime}=0$ be divided out, there remains an equation of order $\frac{1}{2}(n-1)(n-2)$ for λ. To each value of λ corresponds one double point. The corresponding value of μ^{2} may in general be determined by elimination, and hence in general if λ be real the double point is real.

As an example we consider the unicursal cubic

$$
\begin{gathered}
x=\frac{a_{0} \lambda^{3}+a_{1} \lambda^{2}}{c_{2} \lambda+c_{3}}, \quad y=\frac{b_{1} \lambda^{2}+b_{2} \lambda}{c_{2} \lambda+c_{3}} \\
A^{\prime} C-A C^{\prime}=a_{0} c_{2}\left(\lambda^{2}+\mu^{2}\right) 2 \lambda+a_{0} c_{3}\left(3 \lambda^{2}-\mu^{2}\right) \\
\\
+a_{1} c_{2}\left(\lambda^{2}+\mu^{2}\right)+a_{1} c_{3} 2 \lambda . \\
B^{\prime} C-B C^{\prime}=b_{1} c_{2}\left(\lambda^{2}+\mu^{2}\right)+b_{1} c_{3} 2 \lambda+b_{2} c_{3} .
\end{gathered}
$$

The equations for λ and μ give

$$
\begin{gather*}
b_{1} c_{2}\left(\lambda^{2}+\mu^{2}\right)+b_{1} c_{3} 2 \lambda+b_{2} c_{3}=0 \tag{1}\\
-4 a_{0} b_{1} c_{3}\left(\lambda^{2}+\mu^{2}\right)+a_{1} b_{1} c_{2}\left(\lambda^{2}+\mu^{2}\right)+2\left(a_{1} b_{1} c_{3}-a_{0} b_{2} c_{3}\right) \lambda=0 .
\end{gather*}
$$

Hence

$$
\frac{2 b_{1} c_{3} \lambda+b_{2} c_{3}}{b_{1} c_{2}}=\frac{2\left(a_{1} b_{1} c_{3}-a_{0} b_{2} c_{3}\right) \lambda}{\left(a_{1} c_{2}-4 a_{0} c_{3}\right) b_{1}}
$$

is the equation for λ, and the value of λ from this equation, substituted in (1), gives the value of μ^{2}.

Bryn Mawr College,
March, 1907.

