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ON T H E SHORTEST DISTANCE B E T W E E N 
CONSECUTIVE STRAIGHT LINES. 

BY MR. JOSEPH LIPKE. 

CERTAIN well-known geometric results concerning space 
curves and surfaces have been obtained by a discussion of 
the shortest distance between consecutive positions of a straight 
line moving continuously in space. These results have been 
gained by a discussion (recapitulated in §1) of the numerator 
of the expression for the shortest distance.* I t is the purpose 
of this paper to complete the discussion by examining (§§ 2-3) 
the denominator of the distance expression, placing special em
phasis upon the conditions that the distance be an infinitesimal 
of the second order, and upon a geometric interpretation of this 
case. 

§ 1. Brief Discussion of the Numerator, 

The equations of the straight line are 

x = az + p, x = a(t)z + p(t), 
(1) or 

y = bz + q, y = b(t)z + q(t), 
where a, b, p, q are analytic functions of a single variable t. 
We define the consecutive line by the equations 

x = ait + dt)z + p(t + dt), 
(2) 
K J y=b(t + dt)z + q(t + dt), 
or 

x=la + adt + a ^ + • • • I z + ( p + p dt + p ^ 7 + • • h 

y=(b + b'dt +b"±+..?)z + (q + qfdt + q" ̂  + .. .), 

where a = da/dt, a ' = d?a/dt2, • • •. The formula for the shortest 
distance between lines (1) and (2) is given by f 

* Koenigs : Géométrie réglée : Annales de la Faculté des Sciences de Tou
louse, vol. 6, pp. 38-40, 61-63. 

Joachimsthal : Anwendungen der Diff. und Int. Rechnung, etc., pp. 182-
184. 

Knoblauch : Einleitung in die allgemeine Theorie der krummen Flachen, 
pp. 104-106. 

t Laurent : Traité d'analyse, vol. 2, pp. 298-303. 
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(p'dt+P"% + ...)(b'dt + b"% + ...) 

, , . j -{q'dt+q"%+...){a'dt+a"%+..-) 
{ó) a-V{[b'dt + b"%+...-\*+[a-dt + a"% + - . . ] 2 

+ [a{b'dt+b"% +. • .)-b(a'dt+a"% + .. -)]2} 

and expanding, we get 

l&/ «'1/7/2 J_ I -A- l & " «"U *-1&' «' I ! /7/8j_ i - i _ | & ' " a'"\ 
\q' Pfrv * (21 l\\q' P' \"T~l\2M" P"\ J a 6 """ (3!l!ltf' 2>' I 

i _L-I&" a"l_i i_|&' «' I 1/7/4 , f 1 |&lv aiv| , __l_|ö"'a'"| 
"*"2! 2119" P"\~i~l\Slk'"pm\ J a C ~T {4 ! l !k ' P' r 3 ! 2 l k " P" I 

, 1 |&" a" | , 1 5' a' II 1,7/5 I 
^2T8llg /^i? / / /l"r'nTi9 ivP ivll \ m "*" (4 ) <Z = 

l / [ { 6 / 2 + a / V ( a 6 , - 6 a / ) 1 } d ? + { ^ 6 / 6 ' , 4 - r ^ a V ' 

+ f ^ (a&'~ 6a') ( a & " - 6a") } (ft3 + { ^ &'&'" 
+ ^ / / i + r m « / « / / / + ^ « / / V f r â ( a 6 / - - 6 a ' ) 

x(a6 , , ,-6a / / ' )+2T^ l(a6 / /~6a' /) '}cft*+.. .] 
or briefly, 

_ ^ _ [2] eft8 + [3]eft3 + [4]cft4 + [5](ft5 + • - -
( ' D i/{[2]d<8+ [3]cft3 + [4]<ft4 + [5]cft5 + - . . } ' 

It is at once evident that, in general, d is an infinitesimal of 
the first order ; hence 

THEOBEM I. The shortest distance between two consecutive 
generators of a skew surface, is, in general, an infinitesimal of 
the first order. 

If [2] s |*',£| = 0, [3], which is \d [2]/cft, also vanishes, 
but [4] does not vanish ; then d becomes an infinitesimal of the 
third order. Now the condition that line (1) moves tangent to 
the space curve 
(6) x = aty + p, y = by}r + q, z=yfr 

through every point of which one and only one of the lines (1) 
passes, is that 

' " a' 
a o 

and curve (6) takes the form 

(7) »-£L 

where b'p' = a'q' 

ip' 
= 0; 

m x-P
a'-aP' g&'-fy' p' 
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Thus our line generates a developable surface. Hence 
THEOREM I I . If the shortest distance between two consecutive 

positions of a moving line is an infinitesimal of the third order, 
the line will generate a developable surface, and conversely. 

Again, if | % %', | = 0 and | *" %,', | = 0 simultaneously, we have, 
integrating these, the two sets of solutions (i) b = ca + cv 

q= cp+ c2 and (ii) p= ha + hv q=hb + k2 for either of which 
every | f$) f& | vanishes identically, hence N vanishes identi
cally, and d becomes zero. Now, under conditions (i) line (1) 
becomes 

(8) x = az + p, y = (ca + cY)z + cp + c2 

and curve (7) takes the form 

K J a' ' u a ' a" 

a curve lying in the plane y = ex + cxz + c2, hence the line 
moves tangent to a plane curve. Under conditions (ii) line (1) 
becomes 

(10) x = az + ha + kv y = bz + hb + h2 

and curve (7) takes the form 

(11) x*=kv y=*\, z= — k, 

a point, and the line generates a cone. Hence 
THEOREM I I I . If the shortest distance between two consecu

tive positions of a moving line is identically zero, the line will 
move tangent to a plane curve or generate a cone, and conversely. 

We also note that JV= 0 when af = 0, bf = 0, or a = const., 
b = const., i. e., our line moves parallel to itself and generates a 
cylinder ; but this needs further discussion since D also van
ishes here. 

Finally, in any case, N is always an infinitesimal of even 
order.* 

THEOREM I V . For special lines of a surface (shew or devel
opable), the shortest distance between two consecutive generators 
may be an infinitesimal of higher order than the third, but always 
of odd order. 

* Zindler : Liniengeometrie mit Anwendungen : Zweiter Teil, p. 13. 
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§ 2. Discussion of the Denominator. 

The denominator of the expression for d is 

(12) D = T / { [2] df + [3] df + [4] dt* + • • •} 

= l / { C6'3 + «'2 + («6' - *a')2]^2 + [b'b" 
+ a'a" + (ab' - ba')(ab" - ba")]dt3 + \$b'b" 

+ ib"z + }dd" + la"2 + i{ab' - bd){ab'" - bd") 

+ l(ab" -bd'ftdt* + • • •} . 
We have 

[ 3 ] = i | [ 2 ] . 

Hence 

1) [3] will vanish identically whenever [2] vanishes 
identically, and 

2) In general, D is an infinitesimal of the first order. 
Let us find the solution of the differential equation 

[2] == V2 + a'2 + (ab' - ba)2 = 0. 

The only real solutions of this equation are at once seen to be 
b' = 0, a = 0, or b = const., a = const. ; these cause D to 
vanish identically. Hence 

3) 6 = const., a = const, (the real solutions of [2] = 0) 
cause D to vanish identically. 

Now [2] = 0 has imaginary solutions. To find these let us 
write the equation in the equivalent forms 

/•\ / .x (db\2
 /70 ^,(da\2

 n dbda 

or 

00 * - » * + (.*+ ! ) ( * ) + 1 - 0 , 

or 

(in) ft-a^dz.^^j+L 

This differential equation is in Clairaut's form, and its integral is 

(13) b = ca zb i y V + 1 . (c = constant.) 



1907. ] SHORTEST DISTANCE BETWEEN LINES. 493 

This gives rise to the system of equations 

V = cd, b" = ca", V" « cd", . . . , &<"> = cat»,. • • 

and it is easily seen from (3) that D vanishes identically. 
Hence 

4) The general solution b = ca±i V& -f 1 of the differ
ential equation [2] = 0 makes D vanish identically. 

Now the differential equation [2] = 0 is one of second degree 
and therefore has a singular solution. The latter is most readily 
found by solving the form (ii) as a quadratic equation in db/da, 
and setting the discriminant equal to zero. The singular solu
tion is found to be 

(14) a2 + b2 + 1 = 0. 

This solution (14) causes [2] and [3] to vanish and, as can 
easily be found with a little calculation, makes [4] = — b' /4a4, 
i. e., does not cause [4] to vanish. Hence 

5) The singular solution a2 + b2 + 1 = 0 of the differential 
equation [2] = 0 reduces D to an infinitesimal of the second 
order. 

Again if [4] vanishes in addition to the vanishing of 
[2] through its singular solution, we must have, since 
[4] = — 6'4/4a4 = 0, V = 0, or 6 = const., which taken in con

junction with a2 + b2 + 1 = 0, gives also a = const. ; but 
a = const., b = const., cause D to vanish identically. Hence 

6) The singular solution a2 + b2 + 1 = 0 of [2] = 0 taken 
simultaneously with [4] = 0 causes D to vanish identically. 

Thus, we finally have 
7) D is in general an infinitesimal of the first order; if 

a2 + b2 + 1 = 0, D is an infinitesimal of the second order ; if 
b = ca ± i \/c2 + 1, or if b = const., a const., D is identically 
zero. 

§ 3. Geometrie Interpretations. 
We have 

an d-N _ [ 2 ]<f t 2+IXl^+ [4] <** + ••• 
K } D V{ [2] df+ [3] dt3 + [4] dt* + • • •} 

If [2] == 0, through its general solution & = c a ± i y / c 3 + l 
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and also [2] == | *J# | = 0, then q'/p' = b'/a = c, or g' = cp', and 
q = cp -f c2 ; but then both D and JV" vanish identically, and d 
takes the indeterminate form 0/0. But this indeterminacy is 
easily resolved, for the conditions 6 = c a ± i V c2 + 1, q = cp + c2, 
are only a special case of b = m + c1? g =cp +c2 , the conditions 
that the line move tangent to a plane curve. Thus d is zero. 
The curve (6) becomes 

pa'—ap' a(fpd—ap') + c2a'=F.i\/c2+lp p, 
(16) B ! _ _ y, ^ , , = _ _ , 

an imaginary curve lying in the imaginary plane 

y = ex d= ij/o2 + 1 z + c2. 

THEOREM V I . If a continuously moving straight line 
x =s a3 + p, y = bz + q obeys the conditions b = ca =b ̂ j/c2 + 1? 
ç == cp + c2> ^ ^ ^ m o v e tangent to an imaginary curve in an 
imaginary plane, the distance between two consecutive tamgent lines 
being zero. 

Again, if [2] vanishes through its singular solution 
a2 + b2 + 1 = 0, then by 7) D is an infinitesimal of the second 
order, and if [2] does not vanish, N is also an infinitesimal of 
the second order, and thus d is finite. Now the relation 
a2 + b2 + 1 = 0 expresses that the sum of the squares of three 
quantities proportional to the direction cosines of our line, is 
equal to zero, which property is the distinguishing characteristic 
of a minimal straight line of space. Hence 

THEOREM V I I . The shortest distance between two consecutive 
generators of a skew surface generated by a continuously moving 
minimal straight line, is finite. 

If in addition to the vanishing of [2] through its singular 
solution a2 + b2 + 1 = 0, [2] = | J $ | also vanishes, N is an 
infinitesimal of the fourth order, for we have 

a2 + b2 + I = 0 and 

or 

aa' + bb' = 0 and 

b' a' 
q p' = 0 

b' q' a 
a' ~~~p' ~~~ 1>' 

? = - j P or Ï s - J bP 
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—-— 
y a2 p 'dt. 

%2 + 1 

With these conditions we can easily calculate 

a' p"\=='¥^ap -aP)*°> 
hence [4] does not vanish, i. e., N is an infinitesimal of the 
fourth order. Thus d is an infinitesimal of the second order. 
The line moves tangent to a minimal curve in space. The 
equations of the line are 

(17) x = az + p, y = ±iYa2+ 1 zdoi I — = = p ' d t , 
%) y a -f- 1 

and those of the minimal curve to which the line moves tangent 
are, from (6), 

(18) x=pa'-,ap', z~-K v J a ' a 

.Va* + lp' . Ç a 
y = zf i -, ± ^ I : p at. 
U a' J Va? + V Hence 

THEOREM V I I I . The shortest distance between any two con
secutive generators of the tangential surface to a minimal curve in 
spacey i. e., of a minimal developable, is an infinitesimal of the 
second order ; and conversely, if a line moves so that the shortest 
distance between any two consecutive positions is an infinitesimal 
of the second order, it will generate a minimal developable. 

The converse as stated in Theorem V I I I is easily deduced 
from the above discussion, for d is an infinitesimal of second order 
only if [2] = 0, [4] =)= 0, [2] = 0 (through its singular solu
tion) and [4] =(= 0. 

From equations (18) we have 

a(pa" — dp") , zhij/a2 + l(p'a" — dp") 
__ y y -_ _ } a a 

pa''— dp" 
z = /2 

a 
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and hence, the equations of the minimal curve may be written 

M?'®" — a'p") 7 . f v V 4 - Upa"- a'p") 7, 

J a J a 

z = rp'a"-a'p"dL 

J a 

Now set a = (1 — r2)/2r, where T is an arbitrary function of £, 

and set (pa" — ap")/a'2dt = rF(r)dT, where JP\T) is an arbi
trary function of T. Then equations (19) become 

(20) X=\j(l-T*)F{T)dT, y=%-J(l + T*)F(T)dT, 

z=z ƒ rF(T)dr, 

the well-known equations of the minimal curve. 
Using equations (20), we have 

[ 2 ] - 0 , [ 3 ] - 0 , [ 2 ] = 0 , [ 3 ] = 0 , [ 4 ] - = ^ , [ I ] - - ^ 

and 

12T2 + 1 
(21) d . i ^ ) ^ . . . 

Using equations (19), we have [4] = — a'/1263 x ( p V — a'p"), 
[4] = - è,4/4a4 and 

(22) d < * * ^ 
V ; $ ba' ^ 6 a y a « + 1 T 

Finally we may have [2] = 0 through its singular solution 
a2 + b2 + 1 = 0 and [4] = 0, i. e., a = const., b = const. 
Here both N and D are zero, and hence d has the indeterminate 
form 0/0. Since ty = — jp'/a' = — p'/0 = oo, the curve (6) becomes 
x = oo, y = oo, z = oo, i. e., our lines all pass through the same 
point at infinity ; but for the purpose in hand we cannot con-
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sider the cylinder as a special case of the cone, i. e., a cone 
whose vertex is at infinity, for when a = const., b = const., 
the conditions that the line generates a cone, viz., p = ha + \ , 
q =± hb + k2 become p = const., q = const, and the two con
secutive generators actually coincide. Thus, we cannot say, 
that the shortest distance between two consecutive generators of 
a cylinder is zero, i. e., that the two generators actually inter
sect. There is no shortest distance between two such lines ; 
they are everywhere equally distant. Hence, to find the 
distance between two consecutive parallel lines, we shall have 
to use the formula for the distance of a point from a line. I t 
is easily seen that, in general, this distance is an infinitesimal 
of the first order ; it is zero only if the two consecutive lines 
coincide ; it is infinite when a2 + b2 + 1 = 0. Hence 

THEOREM I X . The distance between two consecutive generators 
of a cylinder is, in general, an infinitesimal of the first order ; if the 
generator is a minimal straight line, the distance is infinite. 

COLUMBIA UNIVERSITY. 

N O T E ON T H E COMMUTATOR O F TWO 
OPERATORS. 

BY PROFESSOR O. A. MILLER. 

(Read before the American Mathematical Society, April 27, 1907.) 

T H E R E is a confusing lack of uniformity with respect to the 
use of the term commutator. The present note aims to exhibit 
this fact and to point out some of its sources in the hope that 
these data may tend towards greater uniformity in the use of 
this term and also make its various meanings less confusing to 
the reader. 

The operation now known as the commutator of two opera
tors was used for a long time in the development of group theory 
before it received a special name. I t is frequently employed, in 
various forms, in Jordan's Traité des substitutions, and its ele
gant application in the study of direct products was recognized 
by Holder* and others. The first paper which deals with the 

^Holder, Math. Annalen, vol. 34 (1889), p. 35. It should be noted that 
the reference 91) in Encyklopâdie der mathematischen Wissenschaften, vol. 
1, p. 219. should be to this article instead of to the later one in vol. 43. 


