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converges better the shorter the cylinder, so that by one of 
these formulas the calculation may always be made. Coffin 
has also given a formula by elliptic integrals, which is con
venient when tables are at hand. Mr. Gordon Fulcher has 
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calculated by the three methods values for some twenty ratios, 
from which he has constructed the annexed graph of 
i/47r2a3mV, that is the factor of correction for the ends of the 
solenoid. When the length is ten times the diameter, five 
terms of (20) give nine figures of the result. 

CLARK UNIVERSITY, 
July, 1907. ___ 

ON T H E APSIDAL ANGLE I N C E N T E A L ORBITS. 

BY DR. F . L. GRIFFIN. 

(Read in part before the American Mathematical Society, April 27, 1907.) 
T H E R E are two well known laws of central force all of 

whose trajectories have the same apsidal angle, whatever be the 
apsidal values of the radius vector, viz., that of Newton and 
the law that the force varies directly as the distance. For 
both of these laws the orbits are all conic sections, the apsidal 
angle being ir in the former case, and J-7T in the latter. Gen
erally, however, the apsidal angle depends upon the apsidal 
values of the radius vector. 

In this paper are considered only those laws of central force 
for which the force is a function of the distance, having a finite 
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derivative except at a finite number of distances in any inter
val. For all such laws, and for all orbits lying wholly within 
any interval throughout which this derivative is finite, four 
theorems will be proved. If, for a given law, the derivative 
is finite for all values of the distance, the theorems hold for all 
the trajectories. The criteria obtained find immediately two 
applications : (1) To orbits in the equatorial planes of attracting 
spheroids—incidentally explaining a well known phenomenon 
in the motion of the fifth satellite of Jupiter ; and (2) to the 
trajectories for various simple laws of force. 

Let u denote the reciprocal of the radius vector, and u2P(u), 
the force ; and let P\u) = d[P{u)~\ /du. Evidently, the deriva
tive of the force with respect to the distance is finite if, and 
only if, P'(u) is finite. 

THEOREM I . In order that the apsidal angle be greater than 
IT (equal to ?r, or less than IT) in every trajectory for a given law, 
it is necessary and sufficient that P\u) be (respectively) every
where positive (zero, or negative). 

The proof is got by considering the definite integral which 
gives the apsidal angle. I f h be the constant of areas and 0 
the longitude, the differential equation of any orbit under the 
given law is 

h2u\u + d2u/dd2) = u2P{u) s lu2F(u). 

[P(t&), since it has a derivative, is continuous and therefore 
integrable.] After integration, one has 

h2\u2 + (du/dd)2] = c + F{u), 

c being a constant. Or, if a and /3 [/3 > a] be the apsidal 
values of uy 

/ du \2 1 

(i) ! 

= {a*-u*) + v[F(u)-F(*)-]. 

Hence the apsidal angle is given by 
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Sufficiency of the condition on P'(u). Compare © with 7r, 
the apsidal angle in the case of Newton's law, where P(u) = N} 
a constant. For the latter law the second member of (1) is 
(/3 _ u) [/3 + u - 2N/h2]. Hence, if N be selected, 

the Keplerian ellipse will have the same constant of areas and 
the same apsidal values of u as the original orbit. Therefore 

(3) 2 ^ / 

@ — 7T = 

(4) 

^-u*+™(u 0) 
du. 

Consider now the function 

2N j/82 - u2 + ^ (« - /3)} - A» j /32 - «2 + p [*"(«) - W ] 

or 

(5) *(») s 2iV(w - /3) - .?(«) + F(B). 

Since in both orbits dujdd vanishes at u = a, and at M = /3, 
it follows that 

(6) 
Also, 

9(a) = *(£) = 0. 

&"(u) = - J 1 » = - 2P'(u). 

Suppose now that P(u) > 0 for a = u ~ /3. Then <3>"(it) < 0, 
and consequently <E>'(u) decreases throughout the interval (a, /3). 
Now since <&'(u) has a derivative it is continuous, and there
fore vanishes at most once for a = u — /3. But, from (6), 
<&'(w) must vanish once, by Kolle's theorem. Since <E>'(w) 
decreases from u = a to w = /3 and vanishes between a and 



1907. ] APSIDAL ANGLE IN CENTRAL ORBITS. 9 

/3, ®'(a) > 0 and <3>'(/3) < 0. Consequently <&(M) > 0 for 
a < u < /S. 

This shows that the integrand (4) is everywhere positive, 
whence © — • 7 r > 0 o r @ > 7 r . 

Similarly, suppose P\v) everywhere negative ; then <3>(M)<0, 
the integrand is everywhere negative, and © < 7r. Likewise 
for P'(u) = 0, the integrand is zero throughout, and © = TT. 
Thus, the sufficiency of the condition is established. 

Necessity of the condition on P'(u). Suppose P'(y) changes 
sign within the interval (a, /3). Then within some interval 
(av /3J, P'(u) > 0 ; and within some interval (a2, /32), P'(u) < 0. 
Hence, by the sufficiency proof, all orbits lying wholly within 
(av /3J have their apsidal angles greater than TT ; and all those 
lying within (a2, /32) have their apsidal angles less than TT. 
But this does not fulfill the requirement that © be greater than 
TT (equal to TT, or less than IT) for all orbits lying within (a, /S). 
Hence the condition is necessary. 

THEOREM I I . If P'(u) is positive, and increases with u or is 
constant, then, in those families of orbits one of whose apsidal dis
tances is constant, the apsidal angle increases as the second ap
sidal distance decreases. 

[For orbits having a common pericentral distance this means 
that the apsidal angle is greater the more nearly circular the 
orbit; for orbits having a common apocentral distance the re
verse is true.] 

Case I . Let 1//3 be the common pericentral distance of two 
orbits, whose apocentral distances are l/ax and l /#2 , and whose 
constants of areas are 1\ and h2, /i2 > hv Now, from the dif
ferential equations (1) of the two orbits, it follows that for 
equal values of ux and u2 

<*> *Î(S)!-*Î(S)!+(*Î-^X^-»"). 
And, since {dujd6)x is real for /3 S ux = av the same is true of 
(du/d0)2, and moreover (dujdÔ)\ > 0 at u2 = a1# Hence the 
interval (av /3) is one of real motion for orbit 2 ; and a2 lies 
outside the interval, so that a2 < av The apsidal angles ©x 

and ©2 are given by 
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To compare these two angles, make the following linear substi
tutions : ux = a/3 + bu, u2 = u, where 

a i ~ a2 i & - a i i 

0-aJ v / 3 - a 

Both a and b are evidently positive and less than unity ; and 
ux > u if /3 > ^. Then ©L — ©2 becomes 

(9) *rf( ^-{ap+buf+ ~ [F{ap+bu)-F(p)} 
i 

1 

4 /3>-u>+^[F(u)-F{l3) 
du, 

for u = a2 at i^ = av A function similar to that used in prov
ing Theorem I will be defined here, 

(10) ¥ (u ) s h\W [>2(/32 - u2) + J ty ) - .F(/3)] 

- A2 [>2(/32 - (a/3 + H 2 ) + i^a/3 + 6u) - -F(/3)]. 

Since in both orbits dufdO vanishes for u = a2 and for u = /3, 

(11) *(a2) - *(/3) - 0. 

Evidently 

6-2^"(w) - h\F"(u) - h*F"(a/3 + bu) 

= 2AJP'(tt) - 2AJP'(o/8 + 6u) 
or 

(12) i & - 2 * » = (AJ - AJJi» ~ K [-P'(«i) - *'(«)] • 

Since A2 > ^ and P'(u) is positive, the first term on the right 
side of (12) is negative, and since P'(u) increases with u or is 
constant, and ux > u for yS > u, the second term is negative or 
zero. Hence ^"(u) < 0 for u < /3, and ^ '(w) decreases from 
w = a2 to w = /3, vanishing at most once, because continuous. 
But, from (11), it vanishes once; this shows that W(&2) > 0 
and W(I3) < 0. Consequently *P(u) > 0 for /3 > u > a2, and 
the integrand is positive throughout, showing that ®x — ®2 > 0. 
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Now it was shown that h2 > \ implies a2 < ax ; also it is 
obvious that h2 = hx implies a2 = av I t follows, therefore, that 
the greater the value of a — that is, the more nearly circular 
the orbit — the greater is the apsidal angle. The theorem is 
thus established for families of orbits with the same pericentral 
distance; it remains to examine those having the apocentral 
distance constant. 

Case I I . Let 1/a be the common apocentral distance of two 
orbits whose pericentral distances are 1//3X and l//32, and whose 
constants of areas are \ and h2, h2 > hv An examination of 
the differential equations corresponding to (1) shows that for 
equal values of ux and u2 

(13) AÎ ( J ) " - K (%)\ + (*î - /©(«• ~ O-

And, since (dujd6)2 is real for /32 S u2 = a, the same is true of 
(dujdd)v and moreover {dujd0)\ > 0 at ux = /32. Hence the 
orbit 1 is real throughout the interval (a, /32), and beyond. 
Therefore /31 > £2. The difference of the apsidal angles may 
then be written 

(14) 
ƒ 

^'«2 - (ea+fuf+ i [J^ea + » - i^(«)] 
c£l£, 

where 

Evidently both e and ƒ are positive and less than unity ; and 
ea + fu < u for a < it. Let 

x(«) » ^[>K - («* +»2) + -n« + » - -̂ («)] 
} -y^[^(« 2-M

2) + JP(M)-JP(«)]. 

Then, for the same reason as in (11), 

(16) %(a) = X(/31) = 0 ; 
and 
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(17) ^ X " ( « ) = (Aï - hl)P'(u) - A«[P'(«) - P'{ea + » ] . 

Since both terms of the right member of (17) are negative for 
u> a, x\u) < 0 so that the discussion of ^(u) in Case I applies 
equally to %(u) here. Hence, ©L — ©2 > 0, or @x > ©2. 
Finally, then, it follows that the smaller the pericentral dis
tance — that is, the less nearly circular the orbit — the greater 
the apsidal angle. 

COROLLARY. If two orbits have no apsidal distance in com-
mon, both apsidal distances in the first being less than the corre
sponding distances in the second, the apsidal angle in the first is 
greater than that in the second. 

For, let the apocentral and pericentral distances in orbit 1 
be, respectively, 1/a, and lffiv and in orbit 2, l / a 2 and l//32 . 
Consider a new orbit — orbit 3 — with pericentral distance 
1 //3j and apocentral distance 1 \a%. Then, by Case I , ©x > ©3 ; 
and by Case I I , ©3 > ©2. Hence, ©x > ©2. 

THEOREM I I I . If P\u) is negative, and a decreasing function 
of u or constant, then in those families of orbits one of whose 
apsidal distances is constant, the apsidal angle increases with the 
other apsidal distance. 

The proof is got as in Theorem I I , except that W'(u) and 
x\u) a r e both positive, which reverses the sign of the integrand 
in each case. Hence the conclusion. The reverse of the above 
corollary holds true here. 

[Remark. Theorems I I and I I I might have been anti
cipated intuitionally from the fact that the difference between 
the variations of the given law and that of Newton is most 
marked near the center of force. One should therefore expect 
the apsidal angle to differ from IT by larger amounts, the nearer 
the center the orbit extends.] 

THEOREM I V . About the center of force there exists a system 
of concentric spheres, such that those orbits lying wholly between the 
surfaces of consecutive spheres have their apsidal angles all greater 
than IT, or else all less than IT. 

[The hypothesis upon P(u), viz., P(u) finite save at a finite 
number of points in any interval, is, however, to be strength
ened : P(u) has only a finite number of maxima and minima 
in any interval.] 

By reason of these two hypotheses there exist, in any inter-
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val, only a finite number of values of r for which P'(u) = 0, 
or P'(u) = oo. Select these values as radii of concentric 
spheres. Then, between consecutive surfaces, P\u) neither 
vanishes nor becomes infinite, and consequently keeps the 
same sign. Hence, the difference © — IT has the same sign 
for all orbits in the region specified. 

APPLICATIONS OF THEOREMS. 

While all of the above theorems will be utilized in what fol
lows, Theorem I, by reason of its simplicity and generality, 
offers the most powerful criterion. As will be apparent in the 
second class of applications to be made, an inspection of the law 
of force is all that is necessary to ascertain whether the apsidal 
angle is greater than IT in some orbits, and less than IT in others, 
or whether the difference ® —• IT must always have the same 
sign. 

Class I: Motion in the equatorial plane of a spheroid. 
Case I. The oblate spheroid. The resultant force varies, not 

inversely as the square of the distance, but in a much more com
plicated manner. Denoting by e the eccentricity and by a the 
major semiaxis of a meridian section, the components of attrac
tion, X and Y9 parallel to rectangular axes in the equatorial 
plane are given by * 

X _ F 

(18) x y 

0k
2M-mr . ae ae 

= —• 4 —?—\T~ arcsin , — , 

m being the mass of the attracted particle, M that of the 
spheroid, and x and y the coordinates of the particle, the origin 
being at the center of the spheroid. Now (18) shows that the 
force is central ; and, introducing the variable u, it is found 
that 

(19) P(u) = -j [arcsin aeu — aeu i / l — (aeuf], 

where K is a positive constant. The right member of (19) is 

* Moulton, F. R. Introduction to celestial mechanics, pp. 123 ; 118. 

h a V 1 
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representable by a power series in aeu, convergent for all points 
exterior to the spheroid ; thus 

(20) P(u) = n-fAn(amy, 

where the An are all positive. Evidently, then, for all exterior 
points, P'(u) is positive and increases with u; consequently 
Theorems I and I I apply. 

Hence, every orbit described in the equatorial plane of an at
tracting oblate spheroid has its apsidal angle greater than ir ; and, 
the nearer the center of force the orbit lies, the greater the apsidal 
angle. 

This finds an immediate application in the motion of the 
fifth satellite of Jupiter, whose orbit deviates exceedingly 
little from the equatorial plane of the planet. The oblateness 
of Jupiter is considerable, so that P(u) differs from the new-
tonian term in the series (20) very markedly for large values 
of u. This, with the fact that the satellite's orbit is very near 
the planet, should explain the large difference between its ap
sidal angle and ir, amounting in a year to about 900°. 

This " advance of the line of apsides " has also been fully 
explained from the standpoint of perturbations,* the orbit being 
regarded as an ellipse whose elements vary ; the difference be
tween the apsidal angle and ir being considered as a forward 
rotation of the major axis. 

Case II. The prolate spheroid. The attraction upon a parti
cle in the equatorial plane is given by f 

(21) P(u) = -H aeu i / l + (aeuf — log (aeu + i / l + (aeu)2) I 

K being a positive constant, and a and e having the same mean
ings as in Case I . The right member of (21) is developable as 
a power series in aeu, 

W=QO 

(22) P(u)=^Bn{aeur, 

where 
l - 3 - 5 . . . ( 2 n - l ) ( - If 

n~~ 2 - 4 - 6 . - . ( 2 n ) ' 2n + 3 ' 

*Moulton, loo. cit., pp. 232-233. 
fMoulton, loo. cit., p. 123. 
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This series is convergent for aeu < 1 ; whether this includes 
all exterior points depends upon the value of e. 

Since the first coefficient of P\u) is negative, it is evident 
that P'(u) < 0 for sufficiently small values of u. Hence all 
orbits lying outside of a certain circle have their apsidal angles 
less than TT. 

Again, since the ratio of consecutive coefficients in P"(u) is 

( 2 n + l ) 2 ( 2 n + 3) 
( 2 ? i - l ) ( 2 w ) ( 2 n + ö ) t ' ' 

which has its greatest numerical value, ^f, for n = 1, it follows 
that for aeu < V\%} if the terms of P"(u) be grouped in pairs, 
each pair will have a negative sum. So that, for u sufficiently 
small, P'(u) is a decreasing function ; therefore the apsidal 
angle decreases toward the center of force. 

Finally, calling aeu = X, 

which can be shown to be everywhere negative. Thus, let 
log (X + i /x2 + 1) - (X + JX3) = <Ï>(X). Then 

* ( 0 ) _ o , * ' ( X ) - ï 7 = L = - ( l + X«). 

Since <I>'(^) < ° f° r every real value of X, <3>(X) < 0 for X > 0. 
Hence, the apsidal angle is less than TT in all the trajectories. 

Class II. Orbits for various simple laws. 
The criterion of Theorem I yields especially simple results 

when applied to the following types of laws of force : 
Case I. Force varies inversely as the nth power of the distance. 

If 

u2P(u) = ¥ ^ , P(u) = £ V - 2 , 

and P\u) = (n — 2)k2un~s. Three cases arise : 

(1) n s 2 ; Newton's law, ® = TT. 

(2) n > 2 ; P'(u) > 0, P"(u) ^ 0. Hence, theorems I and 
I I both apply. ® > TT, and increases toward the center. 

(3) n < 2 ; P\u) < 0, P"(u) > 0. Theorem I applies, but 
not Theorem I I I . © < TT. 
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In many of the cases included here it is quite impossible to 
evaluate in closed form the definite integral defining ®. Thus, 
under (2) are included the well knc-wn " inverse fifth power," 
which leads to elliptic integrals ; also, all the inverse higher 
powers leading to abelian and hyperabelian integrals. By 
Theorem I all these integrals are greater than IT and increase 
with the apsidal values of u. 

Under (3) are included : The " inverse first power," which 
leads to logarithms, and which is usually omitted from the 
treatises; the simple law of the "direct first power/' where 
© == i7T ; the case of the constant force, leading to an elliptic 
integral, and the higher direct powers with their involved 
integrals. These apsidal angles are, however, by Theorem I , 
all less than IT. 

Case I I . Force varies as log 1 /rm and inversely as rn. Here, 
since 

u2P(u) = (k2m/rn) log u, P\u) = k2m \_{n — 2) log u • un~'6 + un~B], 
or 
(23) P\u) = k2mun~3 [ I + (n - 2) log u~\. 

From (23) it is evident that for n = 2, P'(u) > 0 for u > 0; 
for n > 2, P\u) S 0 according as log u < — l / (n — 2), 
and for n < 2, P\u) < 0, according as log u $ 1/(2 — n). 
That is, if n > 2, ® > IT in orbits within a certain sphere ; if 
n = 2, ® > 7T in all orbits ; if n < 2, ® > TT in orbits without 
a certain sphere. The opposite inequalities hold in other parts 
of space. 

Case I I I . Force varies as e^u) and inversely as rn. In this 
case, since P\u) = &V~2[<£'(^) + (n — 2)u]e*(M), it follows 
that if (j>(u) be everywhere real, P'(u) has the same sign as 
<j>\u) + (n — 2)u. While a discussion of the cases arising when 
<j)(u) is arbitrary is of small importance, the following special 
cases may well be noted. If <f>(u) > 0 for u > 0, the inequal
ities of Case I I hold ; if <f>'(u) is everywhere negative, those 
inequalities are to be reversed. 

The laws of force which have been examined, while only a 
few, embrace most of those commonly considered in treatments 
of central force problems, and the simplicity of the criterion in 
these cases encourages the hope that it may be found useful 
elsewhere. 

WILLIAMS COLLEGE, 
May, 1907. 


