CRITERIA FOR THE IRREDUCIBILITY OF A RECIPROCAL EQUATION.

BY PROFESSOR L. E. DICKSON.
(Read before the Chicago Section of the American Mathematical Society, April 17, 1908.)

1. A reciprocal equation $f(x)=x^{m}+\cdots=0$ is one for which

$$
x^{m} f(1 / x) \equiv c f(x)
$$

Replacing x by $1 / x$, we see that $f \equiv c^{2} f, c= \pm 1$. Now $f(x)$ has the factor $x \pm 1$ and hence is reducible, unless m is even and $c=+1$. Further discussion may therefore be limited to equations
(1) $F(x) \equiv x^{2 n}+c_{1} x^{2 n-1}+c_{2} x^{2 n-2}+\cdots+c_{2} x^{2}+c_{1} x+1=0$
of even degree and having

$$
\begin{equation*}
x^{2 n} F(1 / x) \equiv F^{\prime}(x) \tag{2}
\end{equation*}
$$

Let R be a domain of rationality containing the c 's.
Under the substitution

$$
\begin{equation*}
x+1 / x=y \tag{3}
\end{equation*}
$$

$x^{-n} F(x)$ becomes a polynomial in y,

$$
\begin{equation*}
\phi(y)=y^{n}+k_{1} y^{n-1}+\cdots+k_{n}, \tag{4}
\end{equation*}
$$

with coefficients in R. By a suitable choice of the c 's, the k 's may be made equal to any assigned values.

We shall establish in §§ $2-7$ the following :
Theorem. Necessary and sufficient conditions for the irreducibility of $F(x)$ in the domain R are
(I) $\phi(y)$ must be irreducible in R.
(II) $F^{\prime}(x)$ must not equal a product of two distinct irreducible functions of degree n.

The second condition is discussed in §§ 8-10.
2. The irreducibility of $F(x)$ in R implies that of $\phi(y)$. For, if

$$
\phi(y)=\left(y^{l}+\cdots\right)\left(y^{m}+\cdots\right), \quad(l+m=n, \quad l>0, \quad m>0),
$$

then would

$$
F(x)=x^{l}\left\{(x+1 / x)^{l}+\cdots\right\} \cdot x^{m}\left\{(x+1 / x)^{m}+\cdots\right\}
$$

3. If $F(x)$ has in R an irreducible factor

$$
A(x)=x^{2 r+1}+a_{1} x^{2 r}+\cdots+a_{2 r} x+a_{2 r+1}
$$

of odd degree, then $F(x)$ has the irreducible factor.
$B(x) \equiv \frac{x^{2 r+1}}{a_{2 r+1}} A\left(\frac{1}{x}\right)=x^{2 r+1}+\frac{a_{2 r}}{a_{2 r+1}} x^{2 r}+\cdots+\frac{a_{1}}{a_{2 r+1}} x+\frac{1}{a_{2 r+1}}$,
not identical with $A(x)$. For, from $F \equiv A Q$ and (2) follows

$$
F(x) \equiv B(x) Q^{\prime}, \quad Q^{\prime} \equiv a_{2 r+1} x^{2 n-2 r-1} Q(1 / x)
$$

Next, if $B \equiv A$, then

$$
\begin{aligned}
A=x^{2 r+1} \pm 1 & +a_{1} x\left(x^{2 r-1} \pm 1\right) \\
& +a_{2} x^{2}\left(x^{2 r-3} \pm 1\right)+\cdots+a_{r} x^{r}(x \pm 1)
\end{aligned}
$$

so that A would have the factor $x \pm 1$ and be reducible.
4. If $\phi(y)$ is irreducible in $R, F(x)$ has in R no irreducible factor A of odd degree $<n$. For, if so, $P \equiv A B$, where B is given in § 3, would be a self-reciprocal factor of $F(x)$. In fact,
$P(1 / x)=A(1 / x) A(x) / x^{2 r+1} a_{2 r+1}, \quad x^{2(2 r+1)} P(1 / x)=A B=P(x)$.
Hence, in view of (3), $x^{-(2 r+1)} P(x)$ would equal a factor of degree $2 r+1$ of $\phi(y)$.
5. If $F(x)$ has in R an irreducible factor

$$
A(x)=x^{2 r}+a_{1} x^{2 r-1}+\cdots+a_{2 r-1} x+a_{2 r}
$$

of even degree, then $F(x)$ has the irreducible factor

$$
B(x)=\frac{1}{a_{2 r}} x^{2 r} A\left(\frac{1}{x}\right)
$$

If $B(x) \equiv A(x), A$ is self-reciprocal, viz.,

$$
A(x)=x^{2 r}+1+a_{1}\left(x^{2 r-1}+x\right)+\cdots+a_{r-1}\left(x^{r+1}+x^{r-1}\right)+a_{r} x^{r} .
$$

In fact, the conditions for $B \equiv A$ are

$$
a_{2 r}= \pm 1, \quad a_{2 r-1}= \pm a_{1}, \quad a_{2 r-2}= \pm a_{2}, \quad \cdots
$$

For the lower signs, A has the factor $x^{2}-1$, contrary to hypothesis.
6. If $\phi(y)$ is irreducible in $R, F(x)$ has in R no irreducible factor A of even degree $<n$. For, by $\S 5$, either B is distinct from A so that $A B$ is a self-reciprocal factor of $F(x)$, or else A itself is a self-reciprocal factor. In either case $\phi(y)$ would have in R a factor of degree $<n$.
7. It follows from $\S \S 4,6$ that, when $\phi(y)$ is irreducible in $R, F(x)$ has no irreducible factor of degree $<n$. Further, by $\S \S 3,5$, an irreducible factor $A(x)$ of degree n implies a second irreducible factor $x^{n} A(1 / x)$, algebraically distinct from $A(x)$. The theorem of $\S 1$ is therefore proved.
8. It remains to consider the case $F=A B$,

$$
\begin{aligned}
& A=x^{n}+a_{1} x^{n-1}+\cdots+a_{n} \\
& B=x^{n}+\frac{a_{n-1}}{a_{n}} x^{n-1}+\cdots+\frac{a_{1}}{a_{n}} x+\frac{1}{a_{n}}
\end{aligned}
$$

where A and B are distinct irreducible functions in R. To determine the a_{i}, we have n distinct relations

$$
\begin{equation*}
a_{1}+a_{n-1} / a_{n}=c_{1}, \quad a_{2}+\left(a_{1} a_{n-1}+a_{n-2}\right) / a_{n}=c_{2}, \cdots \tag{5}
\end{equation*}
$$

We may eliminate a_{1}, \cdots, a_{n-1} and obtain an equation for a_{n}. As shown in $\S 9$, this equation is of degree 2^{n}. Except for certain sets of values of the c_{i}, we may express a_{1}, \cdots, a_{n-1} rationally in terms of a_{n}; the problem is then reduced to the consideration of the rationality of a root of the equation of degree 2^{n}. This equation for a_{n} is a reciprocal equation. In fact, if we set

$$
A_{1}=a_{n-1} / a_{n}, \quad \cdots, \quad A_{n-1}=a_{1} / a_{n}, \quad A_{n}=1 / a_{n}
$$

equations (5) become
(5') $A_{1}+A_{n-1} / A_{n}=c_{1}, A_{2}+\left(A_{1} A_{n-1}+A_{n-2}\right) / A_{n}=c_{2}, \cdots$.
That the equations (5^{\prime}) are throughout of the same form as equations (5) is evident from the fact that we have merely interchanged the rôles of the factors A and B of F. Hence the equation in a_{n}, obtained by eliminating a_{1}, \cdots, a_{n-1} from
(5), is identical with the equation in $A_{n}=1 / a_{n}$, obtained from (5^{\prime}).
9. Denote the roots of $F=0$ by

$$
\begin{equation*}
\alpha_{1}, \quad \alpha_{1}^{-1}, \quad \alpha_{2}, \quad \alpha_{2}^{-1}, \quad \cdots, \quad \alpha_{n}, \quad \alpha_{n}^{-1} \tag{6}
\end{equation*}
$$

A factorization $F=A B$, of the kind considered in § 8, corresponds uniquely to a separation of the roots (6) into two sets each of n roots, such that reciprocal roots belong to different sets. Hence the roots of the first set may be selected in

$$
\frac{2 n(2 n-2)(2 n-4) \cdots 2}{n!}=2^{n}
$$

ways. The number of factors A is thus 2^{n}.
10. For $n=2$, we set $\alpha_{1}=\alpha, \alpha_{2}=\beta$, and have
(7) $\alpha+\beta+\alpha^{-1}+\beta^{-1}=c_{1}, 2+\alpha \beta^{-1}+\beta \alpha^{-1}+\alpha \beta+\alpha^{-1} \beta^{-1}=c_{2}$.

From these we derive

$$
\alpha^{2}+\beta^{2}+\alpha^{-2}+\beta^{-2}=c_{1}^{2}-2 c_{2} .
$$

Hence $\alpha \beta+\alpha^{-1} \beta^{-1}$ and $\alpha \beta^{-1}+\alpha^{-1} \beta$ are the roots of

$$
\begin{equation*}
z^{2}-\left(c_{2}-2\right) z+c_{1}^{2}-2 c_{2}=0 \tag{8}
\end{equation*}
$$

The quartic for $a_{2}(\S 8)$ is obtained by setting

$$
\begin{equation*}
z=a_{2}+a_{2}^{-1} \tag{9}
\end{equation*}
$$

By $\left(7_{1}\right), \alpha+\beta$ is a rational function of $\alpha \beta$ and c_{1} when $c_{1} \neq 0$, Hence, for $c_{1} \neq 0$, the necessary and sufficient conditions for the factorization $F=A B$ in R are that the roots

$$
\begin{equation*}
z_{ \pm}=\frac{1}{2}\left(c_{2}-2\right) \pm\left[\left(1+\frac{1}{2} c_{2}\right)^{2}-c_{1}^{2}\right]^{1 / 2} \tag{10}
\end{equation*}
$$

of (8) be rational and that one of the values $\left(z_{ \pm}^{2}-4\right)^{1 / 2}$ be rational, so that (9) shall lead to a rational value of a_{2}. Incorporating the condition that (4) shall be irreducible in R, we obtain the

Theorem.* The necessary and sufficient conditions that

$$
x^{4}+c_{1} x^{3}+c_{2} x^{2}+c_{1} x+1 \quad\left(c_{1} \neq 0\right)
$$

* For other proofs by the writer, see Amer. Math. Monthly, vol. 10 (1903), p. 221 ; vol. 15 (1908), p. 75. The first paper cited also treats reciprocal sextic equations.
shall be irreducible in a domain R are that $\left(c_{1}^{2}-4 c_{2}+8\right)^{1 / 2}$ be irrational, and that either $l=\left[\left(1+\frac{1}{2} c_{2}\right)^{2}-c_{1}^{2}\right]^{1 / 2}$ be irrational or else l rational and $\left[\frac{1}{2} c_{2}^{2}-c_{1}^{2}-2 \pm\left(c_{2}-2\right) l\right]^{1 / 2}$ both irrational.

11. The only linear fractional transformations which replace a reciprocal equation by a reciprocal equation are

$$
\begin{equation*}
x^{\prime}= \pm \frac{\alpha x+\beta}{\beta x+\alpha} \quad\left(\alpha^{2} \neq \beta^{2}\right) \tag{11}
\end{equation*}
$$

Then y, given by (3), undergoes the transformation

$$
\begin{equation*}
y^{\prime}= \pm \frac{\left(\alpha^{2}+\beta^{2}\right) y+4 \alpha \beta}{\alpha \beta y+\alpha^{2}+\beta^{2}} \tag{12}
\end{equation*}
$$

The transformation on $\frac{1}{2} y$ is the square of (11).
University of Chicago,
March, 1908.

A NEW GRAPHICAL METHOD FOR QUATERNIONS.

BY PROFESSOR JAMES BYRNIE SHAW.

(Read before the Southwestern Section of the American Mathematical Society, November 30, 1907.)

1. Any quaternion q may be written in the form $q=(w+x i)+(y+z i) j$. For convenience let us represent numbers of the form $w+x i$ (practically equivalent to ordinary complex numbers save in their products by j) by Greek characters, so that q may be written

$$
q=\alpha+\beta j,
$$

where for any number β we have $\beta j=j \bar{\beta}, \bar{\beta}$ being the conjugate of β.

The tensor of q is then the square root of the sum of the squares of the moduli of α, β. Also the scalar of q is $\frac{1}{2}(\alpha+\bar{\alpha})$, that is, the real part of α.
2. The product of $q=\alpha+\beta j$ and $r=\gamma+\delta j$ is

$$
q r=(\alpha \gamma-\beta \bar{\delta})+(\alpha \delta+\beta \bar{\gamma}) j
$$

and also we have

$$
r q=(\alpha \gamma-\overline{\beta \delta})+(\bar{\alpha} \delta+\beta \gamma) j .
$$

