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NOTE ON THE THEOREM OF GENERALIZED 
FOURIER'S CONSTANTS. 

BY PROFESSOR W. D. A. WESTFALL. 

I N the theory of the development of arbitrary functions f(x) 
in series of normalized orthogonal functions yfr. (x), 

QO 

f(x)^£x)dxy J fi{M)ylrk(x)dx\^ . ^ ' 

sufficient conditions that this equality exists, and that the series 
converges uniformly, are in general that ƒ (x) and its first m — 1 
derivatives are continuous in (a, 6) and satisfy homogeneous 
boundary conditions for x = a and x = 6.* Then there fol
lows immediately the fundamental theorem of "generalized" 
Fourier's constants 

(1) Ç {f{x)Ydx~±a\. 

This note will give a simple proof that, in case (1) holds true 
for every function satisfying the above conditions, it holds true 
for every integrable function f(x), such that {ƒ (x)}2 is in
tegrable. f 

Since ƒ (x) and {f(x)}2 are integrable in (a, b) there exists, 
for every € > 0, a division of (a, 6) in a finite number of sub-
intervals (xv x2), (x2, x3), •. -, (xn_v » J , x, = a,xn== b, such 
that a function <j>(x) can be defined, having the following prop
erties : 

| (j>(x) | = lower bound off(x) in (x., xi+l) for x^x < x.+ v 

(2) <K*)A*)=o> 

[{/(»')}2-{^)}2]^|<|. 

* D . Hubert, " Zweite Mitteilung über Integralgleichungen," Göttinger 
Nachrichten, 1904. 

E. Schmidt, Dissertation, Göttingen, 1905. 
t The theorem has been proven essentially by W. Stekloff with the restric

tion that ƒ (x) be bounded, Mémoires de VAcadémie de St. Pêtersbourg, 1904. 
The above proof is simpler and does away with this restriction. 
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Consider now a function F(x) defined as follows : in the S-neigh-
borhood of x., 

\ (x — xt)
m(x — S — x.)mdx 

F(x) = <t>(xi + S ) ^ ! : , (x*xSxi+S), 
j (# — ^«(a- _ S _ agmd» 

I (x - œ.)m(œ + S - œ.)mc?cc 
F(x)^<t>(x^S)^ , (xt-S^xSxù 

I (x — a5.)w(aj + 3 — ».)md« 

where 0 < S < minimum J(a^ — xk_^), (i, h = 1, 2, • • -, n). For 
other values of x, F(x) = <£(œ). i^(tr) and its first m — 1 
derivatives are continuous and vanish for x = a = ccx and 
œ = & = œw. Moreover, 

(3) 1^)1^1^)1, %)^)S0. 
Hence 

I {<f>(x)}2- {F(x)}2dx\^ I <f>\x)dx + I 4>2(x)cfo 

n—1 f*Xi+8 

+ Z **(*)<** • 
Since <£(cc) is bounded, S can be chosen so small that 

(4) f {<l>{x)y-{F{x)ydx^e. 

From (2), (3), (4) 

\F(x)\^\f{x)\, F(x)f(x)^0, 

(5) I Ç{f{x)Y - {F{x)Ydx 
i 

{f{x)-F(x)Y^{f{x)Y-{F{x)Y. 

From a known theorem there exists the following inequality 
for any set of continuous normalized orthogonal functions ^{(x) 
and any integrable function f(x) such that | ƒ (as) | is also 
integrable : 
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(6) Ç{fWfdx >±a?, ai= f'f(x) ^{{x)dx. 
*Ja 1 ft/a 

Hence the identity exists 

(7) f { / H } 2 ^ - f > / = (\{f{*)Y- {F(x)Y]dx 
*Ja 1 %)a 

+ f{F(x)Ydx-±A^ + ±{Ai-ai)(Ai + at). 
Ja 1 1 

f > nib 

f(x)flx)dx, At = I F(x)f.{x)dx. 
«/a Moreover 

J 1 i ^ i i 

or from (6) 

= J f{F(x) -f(x)fdx • f{F(x) + f(x)}*dx 
' t / a »/a 

< ^ J T M » ) } ^ Si 2 ^|e jf{/(x)}2cfe, 

since | -F(:B) | ^ | jfjse) | and F(x)f(x) S 0. 
Applying this inequality with (5) in (7), 

(8) I Ç{f^)Ydx - £ a,2 I == e + f V ^ ) } 2 ^ - Z -̂ A** 
I ft/a 1 I « /a 1 

+ 2 ^ e j f {/(x)}2cfe. 

This inequality holds for any e > 0 and the corresponding 
function F(x). Hence the theorem : 

If for a set of normalized orthogonal functions y{r(x) and every 
function f (x), which with its first m — 1 derivatives is continu
ous in (a, b) and satisfies for x = a> x = b a set of homogeneous 
boundary conditions, there exists the equality 

£{f(x)Ydx= ± { jj(x)flx)dx^, 
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then this equality holds true for every integrable function J (x) such 
that {ƒ(») }2 is integrable. 

GÖTTINGEN, 
July 17, 1908. 

ON T H E LOGICAL BASIS O F GRASSMANN'S 
E X T E N S I V E ALGEBRA. 

BY ME. A, R. SCHWEITZER. 

§ 1 . 
I N studying the algebra of Grassmann fundamentally, we 

must carefully distinguish between the Ausdehnungslehre 
proper and the Ausdehnungslehre in a broad sense. Grass
mann himself makes no rigid separation of the two viewpoints ; 
generally, however, the former is found in the edition of 1844 
and the latter is in the edition of 1862 and in various memoirs.* 
Briefly, we may say that the Ausdehnungslehre proper for n 
dimensions (n = 1, 2, 3, • • •) is a development of ^-dimensional 
euclidean geometry by means of the outer product of n + 1 
points, which fundamentally is reducible to sameness of sense of 
two (n + l)-hedra. I t consists of descriptive axioms and cer
tain axioms which relate exclusively to n-spatial congruence. 
On the basis of these axioms and their consequences, we arrive 
at the broader conception of the Ausdehnungslehre by means of 
suitable abstraction, the introduction of parameters, " formaliza
tion," etc.f 

§ 2 . 

If we take three dimensions, the fundamental properties of 
the Ausdehnungslehre are as follows. Concretely expressed, 
the basal relation is sameness of sense of two tetrahedra (iden
tical or not) which is implied by what Grassmann has called 
" Gleichbezeichnung." J This relation is fundamentally non-
metrical, and solely in terms of it we may construct a system of 
postulates for three-dimensional descriptive geometry which is 

* Cf. the Collected Works of Grassmann. For references to the Ausdeh
nungslehre and related subjects we may refer to Macfarlane's admirable 
bibliography, Dublin, 1904. 

t For instance, see Crelle, vol. 49, p. 123 ; Math. Annalen, vol. 12, p. 376 ; 
Ausdehnungslehre, 1862, \\ 151-215 ; Study, Wiener Berichte, vol. 91, p. 111. 

J Coll. Works, I, p. 303, 304. 


