The cases in which the Jacobian determinant of T has at least one non-zero element, say $f_u(0, 0) \neq 0$, are completely discussed. Certain cases where all f_u , f_v , ϕ_u , ϕ_v are zero when u = 0, v = 0 are treated. If f and ϕ admit a common factor in R, then there is an explosive point in \overline{R} , having an infinitely many valued inverse. Even then \overline{R} may be the complete neighborhood of this point, the number of branches which are continuous outside this point being different in different subregions of \overline{R} .

53. It is well known that the group of isomorphisms of a group of order p is of order p-1, and that of a cyclic group of order p^2 is of order p(p-1). The corresponding group of the non-cyclic group of order p^2 is simply isomorphic with the linear homogeneous group on p^2 variables.

The groups of isomorphisms of all types of groups of order p^3 are determined by Western in his paper on "Groups of order p^3q ," Proceedings of the London Mathematical Society, volume 30.

Professor Marriott has determined the groups of isomorphisms of all types of groups of order p^4 . He exhibits these as substitution groups and determines the order of each.

> F. N. COLE, Secretary.

ON THE NEGATIVE DISCRIMINANTS FOR WHICH THERE IS A SINGLE CLASS OF POSITIVE PRIMITIVE BINARY QUADRATIC FORMS.

BY PROFESSOR L. E. DICKSON.

(Read before the American Mathematical Society, April 29, 1911.)

For such a discriminant -P, the problem of the representation of numbers by a binary quadratic form of discriminant -P is quite elementary; moreover, factorization into primes is unique in a quadratic field of discriminant -P. The only*

534

^{*}E. Landau, Mathematische Annalen, vol. 56 (1903), p. 671. His method is not applicable to discriminants — P, where P is odd, as was pointed out by M. Lerch, ibid., vol. 57 (1903), p. 568. Results obtained by the latter by use of a relation between numbers of classes will here be proved by more elementary means and extensions given.

such discriminants of the form -4k are those having k = 1, 2, 3, 4, 7, as was conjectured by Gauss^{*} after an examination of the *determinants* as far as -3000. The present note gives practical criteria and the result of an examination of the values of P less than one and one half million. We denote $ax^2 + bxy + cy^2$ by (a, b, c) and call $b^2 - 4ac$ its discriminant.

First, let $P \equiv 0 \pmod{4}$. Then (1, 0, P/4) must be the only reduced primitive form of discriminant -P. The case in which P/4 is divisible by two distinct primes is excluded, since we may then express P/4 as the product of two relatively prime factors a, c, such that 1 < a < c, and hence obtain the new primitive reduced form (a, 0, c) of discriminant -P. Hence $P = 4p^{e}$, where p is a prime. For $p = 2, (4, 4, 2^{e-2} + 1)$ is a primitive reduced form of discriminant $-\hat{P}$ if $e \ge 4$, and (3, 2, 3) is one if e = 3; while for e = 1 or 2, whence P = 8or 16, there is a single primitive reduced form. Next, let p > 2.The even number $p^{e} + 1$ cannot have an odd factor > 1, since otherwise it would equal the product of two relatively prime integers a and c, such that 1 < a < c, and (a, 2, c) would give a new primitive reduced form of discriminant -P. Hence $p^{e} + 1 = 2^{k}$. Then (8, 6, $2^{k-3} + 1$) or (5, 4, 7) is a primitive reduced form of discriminant -P if k > 5 or k = 5, respectively. For k = 4, $2^k - 1 = 15$ is not a power of a prime. For k = 1, 2, 3, P = 4, 12, 28, there is a single primitive reduced form.

Next, let $P \equiv 3 \pmod{4}$. Then $[1, 1, \frac{1}{4}(1+P)]$ must be the only reduced primitive form of discriminant -P. If P = rs, where r and s are relatively prime and > 1, one of the factors is $\equiv 3 \pmod{4}$ and the other $\equiv 1 \pmod{4}$. Let r > s. Then $\lceil (r+s)/4, (r-s)/2, (r+s)/4 \rceil$ is a new primitive form of discriminant – P, which is reduced if $3s \ge r$. Its second right neighboring form (obtained by using $\delta = -1$, $\delta' = 0$) is $[s, -s, \frac{1}{4}(r+s)]$, which is reduced if 3s < r. Hence $P = p^{s}$, where p is a prime $\equiv 3 \pmod{4}$ and e is odd. If p > 3, $e \ge 3$, the form with $a = \frac{1}{4}(p+1), b = 1, c = (p^{e}+1)/(p+1)$ is a new primitive reduced form of discriminant -P; indeed, c > 4a since $p^{e-1} \ge p^2 > p + 2$. For P = 27, (1, 1, 7) is the only primitive reduced form. For $P = 3^{\circ}$, $[9, 3, \frac{1}{4}(3^{\circ-2} + 1)]$ or (7, 3, 9) is a primitive reduced form if e > 5 or e = 5, respectively. Thus, if $P \neq 27$, P must be a prime. Set

$$T_j = \frac{1}{4}[(2j+1)^2 + P] = T_0 + j(j+1).$$

^{*} Disguisitiones Arithmeticae, Art. 303.

[July,

If j = qm + r, $0 \leq r < m$, then $T_j \equiv T_r \equiv T_{m-r-1} \pmod{m}$. For $r > \frac{1}{2}(m-1)$, $m-r-1 < \frac{1}{2}(m-1)$. Hence any T_j is congruent modulo m to some T_r , where $0 \leq r \leq \frac{1}{2}(m-1)$. Let 2g + 1 be the greatest odd integer $\leq \sqrt{P/3}$. In a reduced form (a, b, c), b > 0, we have $b = 2\beta + 1 \leq 2g + 1$, $\beta \leq g$. We shall prove that there is a single reduced form of discriminant -P if and only if T_0, T_1, \dots, T_g are all prime numbers. It they are primes, a reduced form Mith b = 1, a > 1. Suppose that T_0, \dots, T_{g-1} are primes, but $T_g = ac, c \geq a > 1$, where $0 < \beta \leq g$. If $a \geq b$, where $b = 2\beta + 1$, (a, b, c) would be reduced. Hence a < b. Applying the above result for m = a, we see that $T_g \equiv T_r \pmod{a}$, where r is some integer $0 \leq r \leq \frac{1}{2}(a-1)$. Thus $r < \beta$, so that T_r is a prime. But $T_r \equiv T_\beta \equiv 0 \pmod{a}$. Hence $T_r = a$. Thus $a \geq T_0 \geq \frac{1}{4}(1+P)$. $P \geq 3(2g+1)^2 \geq 3(2\beta+1)^2 > 3a^2$, $a > \frac{1}{4}(1+3a^2)$. Thus (3a-1)(a-1) < 0, which contradicts a > 1.

If P is a prime < 27, then g = 0 and the condition is that $T_0 = \frac{1}{4}(1+P)$ shall be a prime. This is satisfied when P = 3, 7, 11, 19.

For $P \equiv 7 \pmod{8}$, P > 7, T_0 is even and > 2.

For $P \equiv 3 \pmod{8}$, set P = 8k - 5. For $k \equiv 2 \pmod{3}$, $k \ge 5$, $T_0 = 2k - 1$ is divisible by 3 and exceeds 3; while for k = 2, P = 11. For $k \equiv 1 \pmod{3}$, P is divisible by 3. For $k \equiv 0 \pmod{3}$, P = 24t - 5. For $t \equiv 1$, 4, or 0 (mod 5), $T_0 = 6t - 1$, $T_1 = 6t + 1$ or P is divisible by 5 and exceeds 5 except when t = 1, P = 19. For t = 2 or 3, P = 43 or 67 and g = 1, while T_0 and T_1 are primes. For t = 7, P = 163, g = 3, and T_0 , T_1 , T_2 , T_3 are primes 41, 43, 47, 53. For t = 8, $P = 11 \cdot 17$. There remain the cases t = 5l + 12, 5l + 13, where $l \ge 0$. Hence we may state the

THEOREM. There is a single class of positive primitive quadratic forms of negative discriminant -P when

$$P = 3, 4, 7, 8, 11, 12, 16, 19, 27, 28, 43, 67, 163;$$

but more than one class if P is not one of these 13 numbers and not a prime of the form 120l + 283 or 120l + 307, $l \ge 0$.

The remaining primes < 1000 are P = 283, 523, 643, 883, 307, 547, 787, 907. For these $g \ge 4, T_2 = 77, T_1 = 7.19, T_0 = 7.23, T_0 = 13.17, T_0 = 77, T_2 = 11.13, T_2 = 7.29,$

1911.]

 $T_4 = 13.19$, respectively. Hence in each case there is more than one class.

A practical method of examining a wide range of values of P consists in first excluding the values of l for which any one of the numbers T_0, \ldots, T_g has a given small prime factor p. For P = 120l + 283 or 307, $T_0 = 30l + 71$ or 30l + 77, $g \ge 4$. This exclusion has already been effected for p = 3 or 5. For p = 7, any T_j is congruent to T_0, T_1, T_2 or T_3 . For $T_0 = 30l + 77$, these are divisible by 7 if $l \ge 0, 6, 4, 1 \pmod{7}$, respectively; for 30l + 71, if $l \equiv 3, 2, 0, 4 \pmod{7}$. Hence there remain the cases

$$T_0 = 210m + \mu, \mu = 137, 167, 227, 101, 221, 251.$$

The least P is now 403, whence $d \ge 5$. Now $T_0 \equiv m + \mu$ (mod 11). Thus T_0 is divisible by 11 if $m \equiv 6, 9, 4, 9, 10, 2 \pmod{11}$, respectively. But $T_k = T_{k-1} + 2k$. Hence if we subtract 2k from the m for which $T_{k-1} \equiv 0 \pmod{11}$, we obtain the m for which $T_k \equiv 0 \pmod{11}$. This may be done by counting spaces on square ruled paper. At each point so obtained a hole is punched, thus giving a 6×11 stencil for p = 11. The least T_0 is now 221, whence $P \ge 883, g \ge 8$. Similarly, stencils were constructed for p = 13, 17, 19, 23, 29. After using the first three stencils, it was noted that $m \ge 4$ for each μ , whence $T_0 \ge 941, P \ge 3763, g \ge 17$.

The first 10710 values of T_0 were examined; to this end m was given the values ≤ 1785 . The use of each stencil excluded more than half of the values left at the earlier stage. After using the stencils for $p \leq 29$, we had left 110 numbers, for each of which $T_0, \dots,$ or T_6 was verified to be composite. In just four cases were T_0, \dots, T_5 all prime. The work, including the making of the stencils, was done in two days.

THEOREM. For 163 < P < 1,500,000 there is more than one class of positive primitive quadratic forms of discriminant -P.

For a greater $P, g \ge 353$ and there is more than one class unless T_0, T_1, \dots, T_{353} are all primes. The chance that such a case will arise is extremely small. Note that, for P not exceeding $1\frac{1}{2}$ millions, T_0, \dots, T_{14} were shown to be not all prime.