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A NEW PROOF OF THE EXISTENCE THEOREM 
FOR IMPLICIT FUNCTIONS. 

BY PROFESSOR GILBERT AMES BLISS. 

(Read before the American Mathematical Society October 28, 1911.) 

THE theorem with which this paper has to do is the one 
which states the existence of a set of functions 

y% = y%(xi, x 2 , • • -, xm) {% = 1, 2, • • -, n) 

which satisfy a system of equations of the form 

(1) fi(xh x2, • • -, xm; yh y2, • • -, yn) = 0 (i = 1, 2, • • -, n). 

For the case in which the functions ƒ are only assumed to be 
continuous and to have continuous first derivatives, the proof 
seems to have been originally given by Dini.* His method is 
to show the existence of a solution of a single equation, and then 
to extend his result by mathematical induction to a system of 
the form given above, a plan which has been followed, with 
only slight alterations and improvements in form, by most 
writers on the theory of functions of a real variable. In a more 
recent paperf Goursat has applied a method of successive 
approximation which enabled him to do away with the assump
tion of the existence of the derivatives of the functions ƒ with 
respect to the independent variables x. 

One can hardly be dissatisfied with either of these methods 
of attack. It is true that when the theorem is stated as pre
cisely as in the following paragraphs, the determination of the 
neighborhoods at the stage when the induction must be made 
is rather inelegant, but the difficulties encountered are not 
serious. The introduction of successive approximations is an 
interesting step, though it does not simplify the situation and 
indeed does not add generality with regard to the assumptions 
on the functions ƒ. The method of Dini can in fact, by only 
a slight modification, be made to apply to cases where the 
functions do not have derivatives with respect to the variables x. 

* Lezioni di Analisi infinitésimale, vol. 1, chap. 13. For historical 
remarks, see Osgood, Encyclopàdie der mathematischen Wissenschaften, 
II, B 1, § 44 and footnote 30. 

t Bulletin de la Société mathématique, vol. 31 (1903), page 185. 
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The proof which is given in the following paragraphs seems 
to have advantages in the matter of simplicity over either of 
the others. I t applies equally well, without induction, to one 
or a system of equations, and requires only the initial assump
tions which Goursat mentions in his paper. 

Where it is possible without sacrificing clearness, the row 
letters ƒ, x, y, p, a, b will be used to denote the systems 

ƒ = (flyh ' ' -,fn), % = Oi, X2, * ' -,Xm), 

V = (Vh V2, • • -, yn), a = (ab a2, • • -, am), 

b = (61, b2, - • -, 6»), p = (ai, a2, • • -, am; bh b2, • • -, bn). 

In this notation the equations (1) have the form 

ƒ (s; y) = 0, 

the interpretation being that every element of ƒ is a function 
of xi, x2) • • -,xm; 2/1, y2i • • -, yn, and every ƒ* is to be set equal 
to zero. The notations pe, ae, be represent respectively the 
neighborhoods 

I # — a I < e, 12/ — b\ < e; \x— a | < e; \y — b\ < e 

of the points p, a, 6. 
With these notations in mind the fundamental theorem which 

is to be proved may be stated as follows: 
Hypotheses: 
1) the functions f(x; y) are continuous, and have first partial 

derivatives with respect to the variables y which are also continuous, 
in a neighborhood of the point p; 

2) f(a; b) = 0; 
3) the functional determinant D = d(fi, f2y • • ',fn)/d(yu y2, 

• • -,yn) is different from zero at p. 
Conclusions: 
1) a neighborhood pe can be found in which there corresponds 

to a given value x at most one solution (x;y) of the equations 
/ ( * 5 Î 0 - O ; 

2) for any neighborhood pe with the property just described a 
constant ö = e can be found such that every x in a8 has associated 

with it a point (x; y) which satisfies the equations f (x\ y) = 0; 
3) the functions y(x\f x2, • • -, xm) so found are continuous in 

the region a8. 
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For the neighborhood pe let one be chosen in which the 
continuity properties of the functions ƒ are preserved. If 
(x; y) and (x; y') are two points in p€, it follows by applying 
Taylor's formula to the differences f(x; y') — f(x; y) that 

jîG*; y') - M*; y) = ^ (yï - 2/1) + — h ~d~n (v»' - Vn), 

fn(x; y') - fn(x; y) = T ~ (t/i' - 2/1) + h 7*f (»»' - y»), 

where the arguments of the derivatives dfi/dyjc have the form 
#î y + 0;(2/' — 2/) and 0 < 0i < 1. The determinant of these 
derivatives is different from zero when (x; y') = (x; y) = 
(a; b), and hence must remain different from zero if pe is re
stricted so that in it the functional determinant D remains dif
ferent from zero. I t is then impossible that (x; y) and (x; y') 
should both be solutions of the equations f(x; y) = 0 if y 
is distinct from y'. 

In the corresponding region be the function 

<P(P>; y) = / i 2 0; y) + fc2(a\ y)+ • • • + fn(a; y) 

has a minimum for y = b, since for that value it vanishes and 
for every other it is positive. In particular 

<p(a; 7j) — <p(a; b) > m > 0 

for the closed set of points rj forming the boundary of be, on ac
count of the continuity of (p, and the inequality 

<p(x; rj) — <p(x; b) > m 

remains true for all values x in a suitably chosen domain as. 
Hence for a fixed x in a& the minimum of <p(x; y) is attained 
at a point y interior to b€. At such a point, however, 

2aFi = / l ^ + / 2 ^ 1
+ - ' , + / w a 2 / 1

= = 0 ' 

2dy%-*lldyn
 + J*dyn

+m"+*ndVn-
{)' 

and this can happen only when all the elements of ƒ are zero, 
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since the functional determinant D is different from zero in pe. 
I t follows that to every point x in a8 there corresponds in pe 

a solution (x; y) of the equations f(x; y) = 0. 
The functions y(x\, X2, • • •, xm) defined in this way over the 

region a8 are all continuous. For consider the values y and 
y + Ay corresponding to two points x arid x + Ax. By apply
ing Taylor's formula it follows from the relations 

ƒ (x; y + Ay) - fix; y) = f{x; y + Ay) - f(x + Ax; y + Ay), 

which are true because (x; y) and (x + Ax; y + Ay) both 
make f = 0, that 

d/1 . , df1 df1 
Ayi + - Ay2 + h — Ayn 

àyi dy2 dyn 

= fi(x; y+Ay)- fx(x + Ax; y + Ay), 

(2) 

dfn dfn dfn 

= fn(x; y + Ay) - fn(x + Ax; y + Ay), 

where the arguments of the derivatives dfi/dyk have the form 
#52/ + Qity (0 < di < 1). The determinant of these deriv
atives is different from zero on account of the way in which pe 

was chosen, and the second members of the equations approach 
zero with Ax. Hence the same must be true of the quantities 
Ay, and the functions y(xh x2, • • •, xm) are seen to be continuous. 

A similar application of Taylor's formula leads to the con
clusion that 

If the functions ƒ have derivatives of the first order with respect 
to Xh which are continuous in the neighborhood of p, so have also 
the functions y{x\, x2, • • •, xm) in the region a8; and if the f s 
have all derivatives of the nth order continuous, so have the functions 
y(xh x2, • • -, xm). 

For suppose 

A#i =H 0, Ax2 = Axz = • • • = Axm = 0. 

Then by applying Taylor's formula to the second members of 
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equations (2) it follows that 

tyi Axx "
1~ ay2 Aa?i i h 02/n Aa* "*" toi ' 

dyxAxi dy2Axi dyn Axx dxi ' 

where the arguments of the derivatives dfi/dxi have the form 
x + 6/Ax; y + A2/. Hence as A#i approaches zero the quotients 
Ayi/Axi approach limits dyi/dXi which satisfy the equations 

dA ^ +
d A *vi + ... + dl± dJL*+ A ^0 

tyi toi #2/2 toi " ' 2̂/n toi "*" toi ' 
(3) 

^ i i , ^ ^ 2 . , # » * » » , # » = 0 

dyidxi dy2dXi dyndXi toi ' 
where the arguments of the derivatives of ƒ are now (x; y). 
A similar consideration shows the existence of the first deriv
atives with respect to the variables x2, x$, • • •, xm. The ex
istence of the higher derivatives follows from the observation 
that the solutions of equations (3) are differentiate n — 1 
times with respect to the variables x on account of the as
sumption that the functions ƒ are differentiable n times. 

ON A SET OF KERNELS WHOSE DETERMINANTS 
FORM A STURMIAN SEQUENCE. 

BY MR. H. BATEMAN, M.A. 

WEYL * has recently given a theorem which states that if a 
kernel 

n 

hi?, t) = ]C kpq%(s)$q(t) (kpq = kw) 

is formed from n functions $P(s) whose squares are integrable 
in the interval (0, 1), then the smallest positive root of the 

* Göttinger Nachrichten, 1911, Heft 2, p. 110. 


