DEFINITE INTEGRALS CONTAINING A PARAMETER.

BY PROFESSOR D. C. GILLESPIE.

(Read before the American Mathematical Society, February 25, 1911.)

A FUNCTION $f(\alpha, x)$ is defined for each pair of values of α and x in the closed region $0 \leq \alpha \leq 1$ and $0 \leq x \leq 1$. For each value of α in the interval (0, 1) the function $f(\alpha, x)$ is an integrable function of x according to Riemann's definition. A function $F(\alpha)$ is thus defined by the equation

$$F(\alpha) = \int_0^1 f(\alpha, x) dx.$$

The problem considered in this paper is one of uniform convergence; namely, the determination of the conditions to be imposed on the function $f(\alpha, x)$ in order that corresponding to any positive number ϵ there exist a number δ independent of α such that

(I)
$$\left| F(\alpha) - \sum_{i=0}^{i=n} f(\alpha, \xi_i) (x_i - x_{i-1}) \right| < \epsilon,$$
$$(x_0 = 0, \quad x_n = 1, \quad x_{i-1} \le \xi_i \le x_i)$$

for $(x_i - x_{i-1}) < \delta$.

Closely associated with this problem of uniform convergence are, at any rate, two others which lend interest to it. Of these, one is the problem concerning the continuity of $F(\alpha)$. Under the assumption that $f(\alpha, x)$ is a continuous function of α for each value of x, a necessary and sufficient condition that $F(\alpha)$ be a continuous function of α follows from the theory developed. The conditions under which the roots of the equation $F(\alpha) = 0$ are limiting points of the roots of the sequence of equations

$$\sum_{i=0}^{i=n} f(\alpha, \xi_i)(x_i - x_{i-1}) = 0$$

as n becomes infinite is the second problem.

The absence of continuity conditions does not preclude the existence of the inequality (I).

Example (a):

$$f(\alpha, x) = 1 + 2x$$
 for α rational,
 $f(\alpha, x) = 0$ for α irrational,

 $F(\alpha) = 2$ for α rational; $F(\alpha) = 0$ for α irrational.

For a fixed value of $x, f(\alpha, x)$ is discontinuous in α at every point of the interval (0, 1), and $F(\alpha)$ is also discontinuous at every point. Inequality (I) nevertheless exists.

On the other hand it is not sufficient for the existence of the inequality (I) that $f(\alpha, x)$ be limited and $F(\alpha)$ be continuous. Example (b):

$$f(\alpha, x) = \sin \frac{2\pi x}{\alpha} \text{ for } \alpha \neq 0, \quad f(\alpha, x) = 0 \text{ for } a = 0,$$

$$F(\alpha) = \int_0^1 \sin \frac{2\pi x}{\alpha} dx = \frac{\alpha}{2\pi} - \frac{\alpha}{2\pi} \cos \frac{2\pi}{\alpha} \text{ for } \alpha \neq 0,$$

$$F(\alpha) = 0 \text{ for } \alpha = 0.$$

 $F(\alpha)$ is therefore a continuous function of α in the interval (0, 1). Let the law of subdivision be such that the end points of the ν th subdivisions coincide with those values of x for which $\sin 2\nu\pi x$ has maximum values, and let $\xi_i = x_i$. There will then exist an integer n greater than any fixed integer m, and a positive number α less than any fixed positive number δ , such that

$$\left|\sum_{i=1}^{i=n} f(\alpha, \xi_i)(x_i - x_{i-1}) - 1\right| < \epsilon,$$

where ϵ is any preassigned positive number. Since, however,

$$\lim_{\alpha=0}F(\alpha)=0,$$

the inequality (I) does not exist.

Nor, again, is it sufficient for the existence of the inequality that both $F(\alpha)$ be continuous in α and $f(\alpha, x)$ be a continuous function of α for each value of x.

Example (c):

$$f(\alpha, x) = \frac{\alpha^2}{\alpha^2 + (x - 1)^2} \text{ for } x \neq 1,$$

$$f(\alpha, x) = 0 \text{ for } x = 1.$$

380

1912.]

381

 $f(\alpha, x)$ is then a continuous function of α for each value of x. The function

$$F(\alpha) = \int_0^1 f(\alpha, x) dx = \alpha^{\frac{1}{2}} \arctan \frac{1}{\alpha} \text{ for } \alpha \neq 0,$$
$$= 0 \text{ for } \alpha = 0$$

is continuous in α throughout the interval (0, 1). Let the end points of the ν th subdivision fall at

$$0, \ \frac{1}{\nu}, \ \frac{2}{\nu}, \ \frac{3}{\nu}, \ \frac{4}{\nu}, \ \cdots, \ \frac{\nu-1}{\nu}, \ 1$$

and let $\xi_i = x_i$ for $i \neq \nu$ and $\xi_{\nu} = 1 - 1/\nu^2$; then the sum having $F(\alpha)$ for its limits is

$$\frac{\frac{1}{\nu} \cdot \frac{\alpha^{\frac{3}{2}}}{\alpha^{2} + \left(\frac{1}{\nu} - 1\right)^{2}} + \frac{1}{\nu} \frac{\alpha^{\frac{3}{2}}}{\alpha^{2} + \left(\frac{2}{\nu} - 1\right)^{2}} + \dots + \frac{1}{\nu} \cdot \frac{\alpha^{\frac{3}{2}}}{\alpha^{2} + \left(1 - \frac{1}{\nu^{2}} - 1\right)^{2}}.$$

For $\alpha = 1/r^2$ the last term of the sum is $\frac{1}{2}$; the sum of all the terms is greater than $\frac{1}{2}$ since all the terms are positive. The function $F(\alpha)$ is continuous and equals zero when α equals zero, the inequality (I) therefore does not exist.

THEOREM I. If $f(\alpha, x)$ be a continuous function of the two variables α and x, the inequality (I) exists.

This theorem is included in the following more general

THEOREM II. If $f(\alpha, x)$ be continuous in α uniformly with respect to x, i. e., if corresponding to any positive number ϵ there exists a δ independent of x such that $|f(\alpha + h, x) - f(\alpha, x)| < \epsilon$ for $|h| < \delta$, the inequality (I) exists.

This theorem again is a special case of theorem (III).

Theorems I and II are stated under the assumption that $f(\alpha, x)$ is an integrable function of x for each value of α . In Theorem III we drop this requirement and assume only that $f(\alpha, x)$ is a limited function of x for each α .

THEOREM III. If $f(\alpha, x)$ be continuous in α uniformly with respect to x, then the upper sum^{*} converges to the upper integral^{*} uniformly with respect to α .[†]

Since $f(\alpha, x)$ is a limited function of x for each α , the upper integral exists and a function $\overline{F}(\alpha)$ is defined by the equation

$$\bar{F}(\alpha) = \int_0^{\bar{1}} f(\alpha, x) dx.$$

The upper limit of $f(\alpha, x)$ for values of x in the interval (x_i, x_{i-1}) is denoted by $\overline{f}_i(\alpha)$. Unless the upper sum converges to the upper integral uniformly in α throughout the interval (0, 1), there exists a point $\alpha = b$ in this interval such that in any arbitrarily small interval about b the convergence is not uniform. It is sufficient then to establish uniform convergence in the neighborhood of b.

$$\begin{aligned} \left| \bar{F}(b+\eta) - \sum_{i=1}^{i=n} \bar{f}_i(b+\eta)(x_i - x_{i-1}) \right| \\ & \leq \left| \sum_{i=1}^{i=n} \bar{f}_i(b)(x_i - x_{i-1}) - \bar{f}_i(b+\eta)(x_i - x_{i-1}) \right| \\ & + \left| \bar{F}(b) - \sum \bar{f}_i(b)(x_i - x_{i-1}) \right| + \left| \bar{F}(b+\eta) - \bar{F}(b) \right|. \end{aligned}$$

Corresponding to any positive number ϵ , there exists a number δ_1 independent of i such that

$$\left|\bar{f}_{i}(b) - \bar{f}_{i}(b+\eta)\right| < \frac{\epsilon}{3}$$

for $|\eta| < \delta_1$. This follows from the assumption that the function $f(\alpha, x)$ is continuous in α uniformly with respect to x. The existence of the upper integral

$$\int_{0}^{\overline{1}} f(b, x) dx$$

renders it possible to choose a number δ_2 such that

$$\left| \bar{F}(b) - \sum_{i=1}^{i=n} \bar{f}(b) (x_i - x_{i-1}) \right| < \frac{\epsilon}{3} \text{ for } (x_i - x_{i-1}) < \delta_2$$

* Cp. Pierpont's Functions of a Real Variable, vol. 1, p. 337; Hobson's Functions of a Real Variable, p. 339. † The same theorem holds, of course, for the lower sum and lower

integral.

DEFINITE INTEGRALS.

$$\begin{split} \left| \bar{F}(b+\eta) - \bar{F}(b) \right| &= \left| \int_{0}^{\bar{1}} f(b+\eta, x) dx \right| \\ &- \int_{0}^{\bar{1}} f(b, x) dx \right| \leq \left| \int_{0}^{\bar{1}} \left\{ f(b+\eta, x) - f(b, x) \right\} \right| dx \\ &\leq \text{the upper limit of } \left| f(b+\eta, x) - f(b, x) \right|. \end{split}$$

Hence there exists a number δ_3 such that

$$\left| \overline{F}(b+\eta) - \overline{F}(b) \right| < \frac{\epsilon}{3} \text{ for } \left| \eta \right| < \delta_3.$$

Thus we have established the existence of a number δ such that

$$\left|F(b+\eta) - \sum_{i=1}^{i=n} \overline{f}_i(b+\eta) \left(x_i - x_{i-1}\right)\right| < \epsilon \text{ for } |\eta| < \delta$$

and $(x_i - x_{i-1}) < \delta$.

THEOREM IV. If the function $F(\alpha)$ be continuous in the interval (0, 1), and the function $f(\alpha, x)$ be a continuous function of α for each x, then under any fixed law of subdivision there will correspond to any integer m and any positive number ϵ an integer n > m and a number δ such that

$$\left|F(b+\eta)-\sum_{i=1}^{i=n}f(b+\eta, x_i)(x_i-x_{i-1})^*\right|<\epsilon \text{ for } |\eta|<\delta.$$

THEOREM V. If $f(\alpha, x)$ be a continuous function of α for each x, $F(\alpha)$ will be continuous at b provided that, corresponding to any positive number ϵ and any integer m, there exist a number δ and an integer n > m such that

$$\left|F(b+\eta)-\sum_{i=1}^{i=n}f(b+\eta,x_i)(x_i-x_{i-1})^*\right|<\epsilon \text{ for } |\eta|<\delta.$$

The proofs of Theorems IV and V are almost identical with the proofs of the two theorems which establish the necessary and sufficient condition that the sum of an infinite series of continuous functions shall be a continuous function. These theorems in infinite series, as well as those stated here for definite integrals containing a parameter, are applications of

1912.]

^{*} In the function $f(b + \eta, x_i) x_i$ may be replaced by ξ_i provided the manner of assigning ξ_i is prescribed.

the following theorem concerning functions defined by sequences of continuous functions. We assume that each of the sequence of functions $\varphi_n(x)$ is continuous in the interval (0, 1), and that $\lim_{n=\infty} \varphi_n(x) = \varphi(x)$ exists. A necessary and sufficient condition for the continuity of $\varphi(x)$ in the interval (0, 1) is that, corresponding to any positive number ϵ and any integer *m*, the condition $|\varphi(x) - \varphi_n(x)| < \epsilon$ is satisfied for every value of x in (0, 1), where n has one of a finite number of values all greater than m, the value to be given to n depending on the value assigned to x.

CORNELL UNIVERSITY.

March 2, 1912.

ON THE V₃³ WITH FIVE NODES OF THE SECOND SPECIES IN S_4 .

BY DR. S. LEFSCHETZ.

(Read before the American Mathematical Society, April 27, 1912.)

CUBIC varieties in four-space were first investigated by Segre, in two memoirs* which are still classic, and in which he gave a generation of those having more than six nodes, especially the one with ten nodes, while he also considered varieties containing a plane, and gave some of their properties. Castelnuovo† investigated also the V_3^3 with ten nodes, and a good account of the theory of the latter is to be found in Bertini.[‡] So far as we know however, varieties having nodes for which the hypercone tangent degenerates into one cut by any V_{3^1} in a cone—points which we define as nodes of the second species—have been but little considered. In a previous paper § the writer has given the maximum of these nodes for surfaces, or rather a method for obtaining it. This method admitted of an evident extension to *n*-space, and in particular gives for V_{3}^{3} in four-space, a maximum of these nodes equal to half the number of absolute invariants of the most

384

^{* &}quot;Sulle varietà cubiche," Memorie dell' Academia di Torino, ser. 2, vol. 39 (1888). "Sulla varietà cubicha con 10 punti doppi," Atti di Torino, vol. 22 (1887).

^{† &}quot;Sulle congruenze dell 3° ordine," Atti dell' Ist. Veneto, ser 6, vol. 6 (1888).

[‡]Geometria proiettiva degli iperspazi, p. 176. [§] "On the existence of loci with given singularities." the Poughkeepsie meeting of the Society, Sept. 12, 1911. Read before