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T H E problem of finding the surface of revolution of minimum 
resistance may be thought of as the oldest problem of the 
calculus of variations. A first solution was given by Newton* 
in 1686. I t has since been considered by L'Hospital, August, 
Silvabelle, Kneser, and others. The results obtained by these 
writers are based on the Newtonian law of resistance, which 
states that the resistance R is given by the formula 

R = ƒ. sin2 a, 

where ƒ is the force and a the angle which the line of force 
makes with the tangent to the surface at the point of applica­
tion. However, physical experiment does not always verify 
this law. Especially does it failf when the angle a is small. 

As a result of this, several different laws of resistance have 
been given; some being derived mathematically, others being 
stated as verifying experiment. Among these the laws of 
von Lössl,J Duchemin,§ and Kirchhoff|| have received the 
greater notice. They are given by the following formulas : 

D , . D 2 s i n a (4 + TT) sin a 
R = fsma, i t =ƒ——T--Ö—, R = f-7—. -. . 

J ' 1 + sm2 a9 J 4 + TT sm a 
* See Principia Philosophise Naturalis, II; Sect, vn, Prop, xxxiv, 

Scholium. 
t For an account of the various physical causes underlying this, see 

Encyklopâdie der mathematischen Wissenschaften, IV, 17, §§4, 5, 6. 
t F. v. Lössl, Die Luftwiderstandsgesetze, Wien, 1896, p. 96. 
§ Duchemin, Experimentaluntersuchungen über den Widerstand der 

Flüssigkeiten, Braunschweig, 1844, p. 101. This law has been verified 
by Langley, Experiments in Aerodynamics, Washington, 1891, p. 101. 

|| G. Kirchhoff, Journal für Mathematik, vol. 70 (1869). 
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The present paper had its origin in a study of the surfaces of 
revolution resulting from these separate laws. In each case 
it was found that the curve determining the surface had pro­
perties quite analogous to those of the newtonian curve. This 
naturally suggested the determination of a general law of 
resistance having properties which would include the preceding 
as special cases. Such a law is stated in §1. In this section 
the discussion of the properties of the curves resulting from 
this law is given. In the following three sections the theory of 
the special cases will be taken up in the order mentioned as 
applications of the general. This general case also includes 
the newtonian law of resistance and from it the well known 
results* for this law can be obtained. 

§ 1. Surface of Revolution of Minimum Resistance for a 
General Law of Resistance. 

In formulating the problem it will be supposed that the 
surface is formed by the revolution of an arc AB 

z=x(f), y = y(t) feSJSfe), 

about the X-axis, where the point A is taken at the origin and 
B in the interior of the first quadrant. The direction cosines 
of the tangent are then given by the expressions x'(t) and yf(t). 
Let this arc be such that y > 0 except for t = t\. Further it 
will be supposed that the body moves in the direction of the 
negative X-axis with constant velocity. 

Consider then the surface resulting from the law of resistance 
expressed by the formula 

(1) R = f-<p(x',y'), 

where the function <p(x', y') is homogeneous and of dimension 
zero in x and y', and ƒ again represents the force. I t is readily 
shown that, aside from a numerical factor, which is indepen­
dent of the form of the curve, the resistance is given by the 
definite integral 

(2) J - ryy'<p(x',y')dt. 

However from physical considerations! it is necessary to limit 

* For a very complete summary of the work done on this classical problem 
see Bolza, Vorlesungen über Variationsrechung, pp. 407-418. 

t See August, Journal für Mathematik,, vol. 103 (1888), p. 1. 
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the discussion to curves such that along the arcs AB one has 

a* S O , y ' S O . 

Consequently the problem under consideration may be stated 
thus: 

Among all ordinary curves which go from the origin A to a 
point B given in the interior of the first quadrant and which 
besides satisfying the regional restriction 

(3) y > 0 for ti<t£h 

also satisfy the slope condition 

(4) z ' S O , 2 / ' ê 0 for * iS«Sfe , 

it is required to find that one which minimizes the integral (2). 
Since the restriction has been made that the expression 

<p(x', y') is homogeneous and of dimension zero it follows that 
it can be written as a function of q, say <p(q) for simplicity, 
where 
(5) q = x'/y' = cot 6, 

6 being the angle which the tangent makes with the positive 
X-axis. 

The following restriction will now be imposed on the function 

Its derivative <p'(q) first decreases continuously from zero to a 
finite minimum value and then constantly increases to the value 
zero as q increases from 0 to + °° • 

Graphically the function <p'(q) is as shown in Fig. 1. If c 
denotes the value of q, when <p'(q) has its minimum, then 
<p'(q) assumes all values between 0 and <pf(c) twice. 

These conditions are fulfilled in all the special cases to be 
considered. 
Suppose now that an arc of the minimizing curve is con­

sidered which is of class C' and such that 

(6) x' > 0, yf> 0. 

This arc must then satisfy the Euler differential equation, 
from which it follows that a first integral is given by the 
equation 
(7) yy'd<p(x', y')/dx' s y<p'(q) = - a, 
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where a is a constant of integration which must be positive on 
account of the above conditions. Hence it follows that 

<p'(q) 
= aY(q). 

4>{q) 

FIG. 1. 

But from the relation (5) x' is seen to have the value 

<p"(q) 
x = a 

<p'\q) 
qq'. 

and therefore x is of the form 

x=aX(q) + b, X(g) = f^qdq. 
J <p' (q) 

The two equations 
(8) x=aX(q) + b, y=aY(q), 

furnish the most general solution of the Euler differential 
equations in terms of the parameter q, when the inequality 
(6) is satisfied. 

But in as much as the general extremal can be obtained from 
the special curve 

_ fV'fo) , „ „, . - l ƒ h 

7 
by means of the similarity transformation 

(9) X = X(q) m \ Z-^qdq, Y= Y(q) s ^ , 
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(10) x = aX + b, y = aY, 

it is only necessary to study the special curve (9) in order to 
find the general properties of the extremal curve. 

In order to discuss the curve (9) the derivatives will be 
computed and the expression for the curvature determined 
under the assumption that both X and Y are infinite for 
q = + 0 and q = + oo. It is readily verified that 

r = <p 
,2> 

(10) X" = 

y A 

*>V' + ?*V"-2?*' / /2 
— Lip 

J* 

X'Y" Y'X" = <p"\q) 

-31X 

FIG. 2. 

Hence the curve has a cusp when <p"(g) = 0. Let the corre­
sponding value of q be q = c. Further, for the range of 
values 

O^q^c 
the curve has an infinite branch which is convex towards the 
X-axis, and for 

c =5 q < + oc 
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an infinite branch concave towards the X-axis. The curve is 
then as shown in Fig. 2. 

However the Legendre condition, F\ S 0, shows that the 
following inequality must hold 

This excludes the possibility of the convex arch of the curve 
ever furnishing a minimum and thus leaves only the concave 
arch to be considered. 

Further consideration shows that in general the Weierstrass 
condition excludes a part of this arch. For recalling the 
definition of the Weierstrass E-iunction, viz., 

E(x, y; x', y'; x', y') = F(x, y, x', yf) 

- \x'Fx, (x, y, x', y') + yfFyh (x, y, x', y')] 

it is seen that in this case 

E(x, y; x', y'; x', y') = yyf J <p(x', f) - <p(x', y') 

x' | 

= yy'{<p(<i) - <p(q) - [q - qW(q)}-

Since however y and yf are both positive, it is seen that the 
^-function will be positive under the following condition: 

(11) *(g) s <p(q) - <p(q) - [q - q]<p'(q) > 0, 

f or c ^ q < + oo and 0 ^ q < + oo. 
Consider now the derivative of $(g). This is 

$'(g) = <p'(q) - *'(?). 

From the graph of <p'{q) it follows that the second term of the 
above derivative is always positive, while <p'(q) is always 
negative, decreasing from zero to a finite negative value when 
q = c and then increasing to 0 as g approaches infinity. 
Hence for any fixed value of q in the range c ^ q < + °° the 
derivative $'(q) is first positive in an interval O^i q < g0, 
where g0 is the value of q which makes <p'(q) = <p'(q)* Then 
in the interval g0 < q = q the derivative is negative. Finally 
for q Sq < + oo the derivative is again positive. Hence 
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in these intervals the function $(g) first increases, then de­
creases to the value 0 and again increases, as shown in Fig. 3. 

FIG. 3. 

Therefore in order that <£(<?) may always be positive it is 
necessary that 

(12) <p(0) - <p(q) + qtp'{q) S 0 f or c ̂  q < + oo ; 

i. e., if <p(0) — <p(c) + c<p'(c) S 0, then the Weierstrass condition 
is satisfied at each point of the concave arch of the curve and a 
strong minimum results. If however 

(13) <P(0) - <p(c) + c<p'(p) < 0, 

then the equation 
(14) *(0) - <p(q) + q<p'(q) - 0 

has one root d> c and the Weierstrass condition requires that 
q^d. Only that part of the concave arch beyond the point 
where q = d furnishes a strong minimum. 

§ 2. The von Lössl Surface. 
In case the law of resistance is taken as that of von Lössl 

equation (1) becomes 
R = f-sine, 
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and the curves defining the surface of revolution must be 
found among those which minimize the definite integral 

CH v'2 

(15) J = y - f dt. 
J* Vx'2 + y'2 

A first integral of Euler's equation follows at once and the 
equations of the extremal curves in terms of the parameter 
q are 

* = a \w + D* - (q2 + i)* + iog1 + l / l + (?21 + b, 
(16) L «J 

(q2 + l)1 

y = a • 
q 

In order to find the value of q for which the extremal has a 
cusp it is necessary to solve the equation 

<p"(q) = 0 
for q, where 

<p(q) = 
Vq2+1 

This condition requires that 2q2 — 1 = 0. So for this problem 
c = l / l /2 and therefore the angle which the cusp tangent 
makes with the X-axis is 

6 = 54° 44'. 

But not all of the concave arch furnishes a minimum, for it 
can be verified that the inequality (13) is satisfied. Hence in 
order to find where the minimum actually begins it is necessary 
to solve the equation resulting from (14), viz., 

(17) (g2 + 1)* - 2(g2 + 1) + 1 = 0. 

This is a cubic of the form 

xs - 2x + 1 s {x - l)0r2 - x - 1) = 0, 

where (g2 + 1)* has been replaced by x. The value x = 1 
is at once excluded since this would mean that q had the value 
zero. Solving the quadratic factor for x and taking the posi­
tive root, it is at once verified after substituting that q has the 
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value q = 1.2719 + ss d and the corresponding value of 0 is 

0 = 38° 1 0 ' + . 

Hence beyond the point where 6 has this value the von Lösslian 
curve furnishes a strong minimum. 

Further consideration shows* that if the inequalities (6) are 
not satisfied on an arc of the minimizing curve, then this arc 
is a segment of the straight line x = constant ory= constant. 
Consequently, if a minimizing curve exists it must be com­
posed of a finite number of combinations of von Lösslian curves 
and segments of these straight lines. But it is found on 
applying the corner condition for discontinuous solutions that 
the only combination which satisfies all the conditions is the 
one where a portion of the t/-axis is followed by a von Lösslian 
curve. 

Finally, by a method similar to that given by Kneserf for 
the newtonian problem it can be shown that through each 
point P2 in the interior of the first quadrant there passes one 
and but one von Lösslian curve which makes the angle 38° 10' + 
with the positive x-axis at its initial point in the positive y-axis. 

§ 3. The Duchemin Surface. 

For Duchemin's law of resistance, 

2 • sin e 
n j r ' l + s in 20 ' 

aside from a constant factor, the resistance integral is 
M* ,2(*'

2 + / ) * 
4 w ~?TWdt 

Expressed in terms of the parameter q, the minimizing curve 
is then found to have the equations 

x 

(18) 
y=a 

( (?2 + 2)2 ( ( ?2+ 1 ) i 

* This statement can be proved by a discussion quite analogous to that 
found in Bolza, 1. c , p. 412. 

t Archiv der Mathematik und Physik, ser. 3, vol. 2 (1902), p. 273. 
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Since in this case 

the equation 

(19) 

From this it 

which 

is seen 

<p(q) 
vY+i 

~ <f+2 
gives the cusp is 

2 g 4 -

that 

«* = 

3g2 _ g = 0, 

3 + V'57 

and therefore the angle which the cuspidal tangent makes with 
the X-axis is 

6 = 31° 37'. 

Again it is at once verified that not all of the concave arch 
furnishes a minimum. In order to find d it is necessary to 
solve the equation 

(20) l^rZH q* =o, 
KV) 2 f + 2 (ç2 + 2)Vg2 + 1 
After reduction by the substitution of x for l/g2 + 1, equation 
(20) assumes the form 

(21) (x - 1) V - 2r> - 3# - 2) = 0. 

The value x — 1 is again excluded and the positive root of 
the cubic is found to be 

x = 3.1515, 
from which 

q = 2.9887 = d 
and therefore 

6 = 18° 30'. 

Hence the concave arch of the curve beyond the point 
where 6 = 18° 30' furnishes a minimum. 

As in the first example, the most general solution is found 
to consist of a portion of the y-axis followed by one of the 
above curves. Furthermore there is always a unique deter­
mination of the constants for such curves when only the part 
of the curve furnishing a strong minimum is considered. 
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§ 4. The Kirchhoff Surface. 

According to Kirchhoff, the law of resistance should be 

(4 + T) sin a 
R = f- 4 + x sin a 

Neglecting a constant factor which does not affect the shape 
of the minimizing curve, the resistance integral is found to be 

Ch v'2 

J= y , y dt, 
Jh VV2 + y'2 + ey' 

where e = \TT. 
The equations of the minimizing curve are then found to be 

eq2 x=a[- | (g 2 + 1)1 + (1 + 2q2)(q2 + 1)* + 

(22) + (i + ,2 ) l o g
 1 + l / l + ^ - 2e log g] + 6, 

y= g V l + ^ V l + <f + g)2 

From the value of <p(q) it is found that the equation defining 
the cusp value of q is 

(23) 2xz - S x - .7854 = 0, 

where again Vl + q2 has been replaced by x. The positive 
root of this equation is found to be 

x = 1.34603 

and hence q — c — .90098. Therefore at the cusp the tangent 
makes an angle 

6 = 47° 59' 

with the positive X-axis. 
However the inequality (13) is again satisfied and so the 

root d of equation (14) must be found. For this problem the 
equation (14) becomes 

a* - 2x2 - ex + 1 + e s (x - l){x2 - x - (1 + e)} = 0, 

where x has the same meaning as above. The root x = 1 does 
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not satisfy the previous conditions. The positive root of the 
quadratic factor is 

x = 1.9266. 
From this 

qzs d= 1.64676 
and therefore 

e = 31° 16'. 

Hence the concave arch of the curve (22) furnishes a minimum 
for the integral J beyond the point where the tangent makes an 
angle of 31° 16' with the positive x-axis. 

A statement similar to those in the two preceding sections 
regarding the most general solution and the determination of 
the constants holds for this problem. 

It should be noted that in neither of the three cases con­
sidered is the angle 6 corresponding to q = d as large as that 
of the newtonian problem where 0 = 45°. So whether or not 
the newtonian law fails for small values of the angle a, it is 
certain that these laws hold only for smaller values of the 
angle than in the newtonian problem. 

SHEFFIELD SCIENTIFIC SCHOOL, 
Y A L E UNIVERSITY. 

SHORTER NOTICES. 

Les Systèmes d'Equations aux Dérivées partielles. By 
CHARLES RIQUIER. Paris, Gauthier-Villars, 1910. xxvii 
+ 590 pp. 
DURING the past twenty years Professor Riquier has pub­

lished a large number of memoirs on the theory of systems of 
partial differential equations. The main results of his inves­
tigations are now made more accessible to mathematicians 
by incorporating them in a systematic treatise where they are 
presented from a uniform point of view. The theory of the 
most general system, containing any number of equations 
involving any number of functions of any number of inde­
pendent variables with their partial derivatives of arbitrary 
order—is naturally extremely difficult, and the author is to 
be congratulated for the clearness of his treatment. The 
symbolism and terminology are carefully chosen, the main 


