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IN this note I wish to present a simple development of the 
principal properties of the function T(x), based on the elements 
of the theory of functions of a complex variable. 

1. Let <p(x) denote the function 

(1) xx~h~x V27T (— T < arg x < + w), 

where that determination of <p(x) is chosen which is real and 
positive when the complex variable x is real and positive. The 
function T(x) is defined to be 

(2) Km - . —J— ... —J— <p(x + n + 1) 
W n=*X X+l £+W 

( n = 0 , 1,2, ••• ; a 4=0, - 1 , - 2 , •••)•* 
It is necessary to establish first that the limit of the sequence 

exists. Denote the (n + l)th term of the sequence by 
PnO*0. It is clear that none of these terms vanish, and that 
the question of convergence of the sequence is essentially the 
same as of the series 

(3) log po(x) + log \pi(x)/pf>(x)] + log \p*(x)lpi(x)] + • • -, 

where the principal logarithms are taken. 
We have at once the relation 

/ 4) ffn(a) = <P(X + n + 1) t 

Pn-i(x) (x + ri)<p(x + n) 
* A similar formula has been obtained by Enneper, Dissertation, Göttin-

gen (1856), p. 10. 
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Let us therefore consider the function log[ç>(x + l)/x<p(x)], 
since from it may be obtained the (n + l)th term of (3) by 
replacing x by x + n. A substitution of the known value 
of <p(x) gives us at once 

\ 3 2 -2 / z 2 \ 4 2 -3 /a : 3 ^ 

the last member being the expansion of the function in powers 
of 1/x in the vicinity of x = oo. This expansion converges 
for j x | > 1 since the function has no singularity save two 
branch points of infinite order at 0 and — 1; the expansion in 
series will converge uniformly for \x\ ^ d > 1, and the func
tion it represents may be written M(x)/x2, where M (x) remains 
finite and analytic for \x\ ^ d. That is, we have 

The series (3) may now be written 

(3) \og<P(x)+-1^+-^TW + -^TW+.-.. 

Suppose first that x lies in the right half-plane and also that 
| x | ^ d. In this case x + 1, x + 2, • • • will exceed d in 
absolute value, and the (n + l)th term of (3') will be not 
greater in absolute value than the nth term of the series of 
positive quantities 

(5) & • K • K • \x\2^\x+l\2^\x + 2\2^ " 
For x in the right half-plane we have u ^ 0, if x = u + V— lv, 
so that 

I x + n |2 = (u + ri)2 + v2 ^ u2 + v2 + n2 = | x \2 + n2. 

Accordingly each term of the above series is not greater in 
absolute value than the corresponding term of 
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If we put x = d in this series we do not decrease the absolute 
value of any term, and obtain a convergent series of positive 
constants. Therefore by Weierstrass's test the original series 
(3) converges absolutely and uniformly f or | x \ *td and x in 
the right half-plane. This demonstrates that the limit (2) 
exists, is analytic, and does not vanish, for x restricted in 
the manner stated. 

By definition of $»(#) we obtain for k = 0, 1, • • •, 

(7) Pn(x) = - • j q T J • • • —^ Vn-*-l(x + h+l) 

(a * 0, - 1, . . . )-

Also for any x we may choose k so large that x + k + 1 lies 
to the right of the imaginary axis, and exceeds d in absolute 
value. From what precedes we see that the last factor on 
the right in (7) will uniformly approach the limit T(x + k + 1) 
different from zeror in the vicinity of this x, as n becomes 
infinite. Thus the limit (2) exists in all cases and represents a 
function T(x) nowhere zero, analytic in the entire plane with 
the exception of the points 0, — 1, • • •. It is clear from the 
formula (7) that at these points T(x) has a pole of the first 
order. 

If in particular we put k = 0 in (7) and let n become infinite 
we see that T(x) is a solution of the functional equation in f{x) 

(8) f(x + 1) = xf(x). 
The function T(x) given by (2) is,jor x + 0, — 1, — 2, • • -, 

a single-valued and analytic function different from zero and 
satisfying the relation T(x+1) = xT(x). At the excluded points 
T(x) has a pole of the first order. 

2. It remains to characterize F(x) in the vicinity of x = oo. 
For x in the right half-plane and \x\ ^ d, we have seen that 
the (n + l)th term of (3') is not greater in absolute value than 
the nth term of (6) ; this in turn is not greater than the nth 
term of the series 

whose sum evaluates to K/\ x |2 + KTT/2 \x\. In this way a 
simple upper limit of the form K'/2 \x\ for the sum of the 
terms of (3') after the first is obtained when \x\ ^ d. 
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For x in the left half-plane and f or | v \ ^d, all of the quanti
ties x + 1, x + 2, • • •, having the same imaginary component, 
are also at least as great as d in absolute value. Accordingly 
the (n + l)th term of (3') is again not greater in absolute value 
than the nth term of (5). In this case the sum of the series 
(5) is less than K'/\ v\. In fact, the terms after the leading 
nth one for which x + n lies on or to the right of the imagi
nary axis constitute a series of the form before considered of 
sum less in absolute value than K/\ x + n |2 + KT/2 \ x + n | 
and therefore less than K'/2 \v\. The remaining terms con
stitute a part of a similar series 

| - a - n + l | 2 " r | - a - n + 2 | 2 ~ r ' " ' 

also less in absolute value than the same quantity. 
If then I denotes the distance of the point x from the negative 

half of the real axis,* we find from (3') that 

log T(x) = (x — | ) log x — x + log AHÏT + ix(x), 
( 9 ) (| tx(x) | < K'/l for I ^ d.) 

This result gives at once the following: the function T(x) 
has the property that Km T(x)/cp(x) = 1 if the point x recedes 
indefinitely from the negative half of the real axis. 

3. The fact that T(x) satisfies the functional equation (8) 
is of^central importance. By means of this fact the function 
e*

J-**fl?(i — x) can also be seen to be a solution of (8). The 
ratio of T(x) to this new solution is periodic of period 1, for 
if x is changed to x + 1 the equation (8) shows that the first 
and second members of the ratio are both multiplied by x. 
This ratio 

p(x) = r (3)r ( l - x)le"vzri* 

may also be verified directly to be of period 1. 
Consider now p(x) in the period strip 0 ^ u 5* 1 where it 

has no singularities save a pole of the first order at x = 0, 1; 
it is clear from the definition of p(x) that this periodic func
tion nowhere vanishes in the strip, 

* If u ^10 we have I = |v\ and if u^0 we have I = \x\. 
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Let us determine the asymptotic form of p(x) at the ends of 
the strip. We have by (9) 

log p(x) = (x — i)[log x — log(l — x)] - 1 + log 2TT 

+ Ufa) + ju(l — X) — 7T V — lx. 

If x lies in the upper half of the strip, 1 — x lies in the lower 
half of the strip, and vice versa. Let x tend to infinity in the 
upper half of the strip, then 1 — x will tend to infinity in the 
lower half. By virtue of our convention we shall have 

log (1 — x) = — 7T V — 1 + log(x — 1), 

where log (a; — 1) is the principal logarithm. Substituting, we 
find 

\ogp(x) = L~ (ƒ - ^J^V1"" x) ~ 1J 

- 2"~ + log 2TT + ix(x) + M(1 - x). 

This equation proves that, as # becomes infinite in the upper 
end of the strip, 

lim p(x) = — 2x V — 1, 

since the first term and the last two terms on the right-hand 
side approach zero. Likewise, as x approaches infinity in the 
lower half-strip, we have 

log (1 — X) = 7T V— 1 + log (X ~ 1) 
and find _____ 

lim 62ff ̂ ~lxp{x) = 2TTA/- 1. 

Accordingly if we write 

2 = , 2 W ^ p(aO = g(s), 

the strip in the axplane is transformed into the complete 
z-plane, the upper and lower ends of the strips corresponding 
to z = 0 and z = oo respectively; and at the same time it is 
evident that q(z) is single-valued, analytic in the extended 
js-plane save at z = l(x = 0), where it has a pole of the first 
order; furthermore q(z) vanishes nowhere save at 2 = oo, 
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where zq(z) takes the value 2r V— 1. These facts show at 
once that q(z) is the rational function of z 

2 7 T A / " : : : 1 

Substituting the corresponding value for p(x) in the equation 
of definition, there results 

(10) T(z)T0.-x) = -r̂ —, 

a fundamental formula. If both sides are multiplied through 
by x, the left-hand side may be written T(x + 1)I\1 — x) 
and tends to T2(l) as x tends to zero; the right-hand side tends 
to 1. Since, by (2), T(l) is positive we obtain 

( i l ) . r ( i ) = i. 

4. According to the results of section 2, we have the im
portant relation 

! ™ r - ^ - '• 

where y is fixed and I again represents the distance of the 
point x from the nearest point of the negative half of the 
axis of reals; in fact these results show that this limit is 
equal to 

(13) lim^tf-limfl+^^-l. 

Now if we divide pn(x) by £>n-i(l) we find at once 

pn(x) 1 » 2 • * • n <f>(x + n + 1) ^ 
2V-i(l) x • x + 1 • • • x + n (j>{n + 1) ' 

if further we make use of equations (11) and (13), letting n 
become infinite, we obtain Euler's formula 

(14) r(x) = Km V i '"n - (n+ 1)*. 
x

 ws=aoa: • x+ 1 • • • x+ n ' 
It is to be noted that the final factor on the right, which 
replaces <p(x + n + l)l<p(n + 1) in pn(x)/pn-i(l), is not of 
such a nature as to affect the uniform convergence of the 
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logarithm of the sequence. This property is carried over 
from (3) since the final factor bears to the factor which it 
replaces a ratio which approaches 1 uniformly in any finite 
region as n becomes infinite. 

If we introduce Euler's constant 

0 - K m ( l + | + . . . + i - l o g « ) . 

we obtain the Schlömilch product formula 
p—Cx <» px\n 

In this case the final factor on the right in (14) is replaced by 

^( l + ! + . . . + ! _ * > 

5. Another form of solution of the functional equation is 
the definite integral 

X + CO 

e~Hx-ldt, 

valid for x in the right half-plane. The fact that this integral 
I{x) satisfies the functional equation may be verified by form
ing xl(x) and integrating by parts. It is furthermore evident 
that 1(1) = 1. 

To prove that I(x) is identical with T(x) we can proceed as 
follows. The function I(x) is analytic for any x within the 
right half-plane, since the integrand is analytic in a; for t > 0; 
and the integral is absolutely and uniformly convergent in 
the vicinity by the ordinary tests. The ratio function 

p(x) = I(x)lT(x) 

is periodic of period 1 in # in consequence of the fact that 
I{x) and T(x) are solutions of (8); and this function p(x) is 
analytic in x throughout any period strip such as 1 ^ u ^ 2. 

Now the path of integration along the positive half of the 
real axis may be modified to be any ray within the right half-
plane from t = 0 to t = oo. In fact the integrand is con
tinuous in the sector formed by the positive half of the real 
axis and such a ray, and vanishes to infinite order at t = oo ; 
thus Cauchy's integral theorem may be applied to show that 
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the integral taken around the sector vanishes. Take the ray to 
pass through t = x in the selected period strip and write t = xp; 
we obtain 

where p is a real variable. Hence we see that f or 1 ^ w ^ 2 

I I(x) | S | x- | | JT * dp + ƒ °° ér'peZp } < 2 | a» | , 

since if the second integral in the bracketed expression were 
taken from 0 to oo it would give 1(2) = 1(1) = 1 by (8) and 
(11). Moreover by (9) it is clear that 

| T(x) > | x*-11 for 1 ^ u S 2, | « | > X, 

if X is sufficiently large and positive. 
Consequently we obtain, for | v | sufficiently large, 

\p(x) | < 2\x\. 
As before, write __ 

z = e^^\ p{x) = q(z). 

It is apparent that ç w is single-valued and analytic at every 
point save z = 0 and z = oo, where however zq(z) and g(s)/a 
respectively tend to zero. It follows by Riemann's theorem 
that q(z) is analytic in the extended plane, and thus is a 
constant which reduces to 1 since it has already been seen that 
KD = r(i) = i. 

6. Differentiating Schlömilch/s infinite product logarith
mically, we obtain the series for the Euler ^-function 

(16) ,(*) = £log IX*) - - C - I - t [£-n - i ] . 

The differentiation is legitimate because of the uniformity of 
convergence of this product. From the properties of T(x) 
it follows that \[/(x) is analytic in the finite plane save for poles 
of the first order at 0, — 1, . . . with residues —lat these points. 

We furthermore obtain 

(17) \l/(x+ 1) — yp(x) = - , yp(x) — ^(1 — x) = w cot TTX 
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directly from the functional equation for T(x) and from (10). 
To investigate the nature of \J/(x) at x = oo, we differentiate 

(9), which then becomes 

yp(x) = log x - YX + S ^ ' 

and consider the magnitude of the last term. Take a point x 
at a distance I ̂  2d from the negative half of the real axis, 
and about it draw a circle C of radius 1/2. Then we have by 
differentiating Cauchy's integral for fi(x), and using the upper 
limit for ix(x) given in (9), 

d ^ 
2 T V 

1 f >*(*> J , ^ 2 Z ' f | ,,,1 2K' 

This desired inequality shows that dfxfdx is of the second order 
in l/l and that Km \f/(x)/log x= 1 as the distance of the point x 
from the negative half of the real axis becomes infinite in any 
manner. 

7. A final central theorem is the development of the function 
T(x) relates to the evaluation of the beta function 

(18) B(x,y) = £t*~ia-t)v-idt, 

where x and y have positive real parts. The formula to be 
proven is 

T(x)T(y) 
(19) B{x, y) = 

T(x + y) 

The attack is identical in spirit with that followed in section 5. 
First we observe that B(x, y) is analytic and symmetric in 

x, y in the domain under discussion and that j?(l, 1) = 1. 
Also, integrating by parts, we find 

xB(x, y + 1) = yB(x + 1, y), 

and we find directly 

B{x, y + 1) = f t*-\l - ty^d - f tx(l - ty-Ht 
Jo Jo 

= B(x, y)-B(x+l, y). 
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Thus we obtain the functional equation in x 

xB(x, y) 
B(x+l,y) = x+ y 

and likewise the same functional equation in y. It is readily 
verified that the right-hand member of (19) satisfies these 
equations and hence that 

B(x,y)T(x+y) 
p(x, y) = 

T(x)T(y) 

is a function periodic in x and y of period 1 and analytic in the 
domain under consideration. 

Now hold y fixed of real part not less than 1, and let x be 
arbitrary in the period strip 1 ^ u ^ 2. We have then 

I B(x, y) | <; f | t*-\i - ty-11 dt ^ i. 

Moreover we have for some k > 0 

r(») 
re* + y) 

by (12) for | » | large enough. Thus there results 

| pfo y) | < - ^ 

for | Î? | large enough. Since p(x, y) is analytic throughout 
the finite strip in x, and since this relation shows that p{xy y) 
is finite at both ends of the strip (see section 5), it follows that 
p(x, y) is finite throughout the strip. Hence p(x, y) is con
stant in x, and likewise in y, and therefore is constant in both 
variables, being equal to p(l, 1) = 1. This demonstrates the 
truth of (19). 

The general type of consideration given above admits of 
further development, but the material which I have presented 
will serve to indicate its nature. 
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