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ON THE SUMMABILITY OF FOURIER'S SERIES. 

B Y DR. T. H . GRONWALL. 

(Read before the American Mathematical Society, February 22, 1913.) 

1. LET 
A w - (ft+P(ft + 2)-..(ft+n) 

An ~ n\ 
(1) 

r(» + fc+i) 
= r ( f c + i ) r ( « + i ) («-1.2.3, . . -) , A w = i , 

so that 

then the identity 
00 I 1 1 00 00 

XU»W«" = (1 _ „)*+•! = Y=-z • ( ï ^ 5 » = S»* • X ^ ' ^ * " 

gives 

(3) 4 . » = S il/*-» = É i* - /*-» . 
i/=0 i>=0 

The nth Cesàro mean of order h of a given series ô + u\ 
+ • • • + un + • • • is, by definition, equal to 

1 _n . i ^ y 

A-n i/=0 **-n v=0 fi—0 

(both definitions being equivalent on account of (3)), and if 
lim Sn™ exists and equals s, the given series is said to be 
w=oo 

summable by Cesàro's means of order k, or briefly, summable 
(CJc), with the sum s. 

In the present note, I propose to give a simplified proof of 
the following theorem, due to Riesz and Chapman:* 

* M. Riesz, "Sur les séries de Dirichlet et les séries entières," Comptes 
rendus de VAcadémie des Sciences (Paris), vol. 149 (1909), pp. 909-912 
(gives no details of the çroof). 

S. Chapman, "Non-integral orders of summability of series and in­
tegrals," Proceedings of the London Mathematical Society, ser. 2, vol. 9 
(1911), pp. 369-409. (See p. 390.) 
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Let fix) be a function defined in the interval — TT ^ x ^ wf 

and such that in this interval \ fix) \ is integrable in the Lebesgue 
sense;* then the Fourier series for fix) is summable (Ck) for 
any k > 0 with the sum %(f(x + 0) + fix — 0)) = § lim 

(ƒ(# + «) + fix — e)) at any point where this limit exists, f 
The convergence of the Ceshro means of order k towards this 
limit is uniform on any closed range for every point of which 
fix) is bounded and fix + 0) + fix — 0) exists uniformly. 

2. To prove this theorem, we start from the well known 
expression for the sum of the n + 1 first terms of the Fourier 
series for fix). 

s*< u - l*"" -*8* J _ O N sin (271+1)?/ , Sn{fix)} = - I f{x + 2y) - j — dy 
<w+x)i2 b i n y 

""* x sin (2n + l)y , 
/ ( * + 2y) — ^ <*2/ "" * J-<>. 

on account of the periodicity of f(x), as established in foot­
note *, and this expression is easily transformed into 

'M*)) -I r\f(x+2y)+f(x-2y))s{n(l?i'l1)ydy, 
7T JQ bil l y 

and the nth Cesàro mean of order k of the Fourier series in 
question becomes, by (4), 

Sn™{f{x)) = I r'\f(x + 2y) +fix - 2y))sn™iy)dy, 
IT Jo 

The simplification in the present proof lies in the method of arriving 
at the inequality (7), which is obtained by Chapman by a method 
equivalent to the application of Euler's summation formula to the expres­
sion. 

The present method is applicable also to the corresponding problem in 
the expansion of a function of two variables in a series of spherical har­
monics; see my forthcoming papers in the Mathematische Annalen: "Über 
die Laplace'sche Reihe" and "Über die Summirbarkeit der Reihen von 
Laplace und Legendre." 

* In Chapman's statement of the theorem, f(x) is only required to be 
integrable in the Lebesgue sense without being absolutely integrable (both 
requirements being equivalent only when f(x) is bounded for — x ̂  x ^ ir). 
In Art. 3 of the present note, it is shown by an example that in this form 
the theorem is not generally true. 

t For x = ±TT, this limit should be replaced by \i ƒ[( — ir + 0) -f f(ir—0)], 
which may be included in the expression above by defining fix) outside of 
the interval — ir ̂  x £jk ir as periodic with the period 2ir. 
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where 

Making f(x) = 1, we obtain 

l = , „ « { ! } = ! r'\nw(y)dy, 

and consequently 

»-w {ƒ(*)} - * ( ƒ ( * + o) + ƒ ( * - o)) 

(6) = £ Jf"1 (ƒ(* + 2y) + fix - 2y) - f(x + 0) 

- / ( a : - 0 ) K « ( y ) c f o = - I + - , 
?r Jo, ft J e 

where 0 < e < x/4. 
We now assume & < 1;* the main point in our proof con­

sists in showing that 

(7) l f* | snM(y) \dy<Cl (n = 2, 3, 4, • . . ) , 
« %/o 

where ci, as well as c2, c3, • • • which will be introduced later, 
are positive constants independent of n. We decompose our 
integral as follows: 

As we have 

sin (2v + l)y 

sm y 
1 + 2 2 cos 2p,y 

it follows that 

£>2r+l <£2n+l , 

I *n(fc%) I ^ XÖ5 • (2n + 1) Ê ^n-, (^1 } = 2 n + l , 

and consequently 
1 /•ir/(2»+l) 1 /»ir/(2»+l) 

(8) - | «.<*> (y) | <*y < - I (2n + 1)<& = 1. 
TT Jo ^ Jo 

* A series being (uniformly) summable (Ck) is also (uniformly) summable 
{Ck') with the same sum when k' >k (see Chapman, 1. a ) , and it is therefore 
sufficient to prove our theorem f or k < 1. 
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To estimate the second part of our integral, we observe that, 
for | z | < 1, 

1 °° 

1 oo op 

or writing 1/z instead of zr 

zk+i 
* = £*-nZ^^-v^, 

whence, by Cauchy's theorem, 

(W Y A (Hg2^i = - L f ^ ^ , 
W t S " ^ 2 « J , (2 - l)*(s - e2*") 

the integration being performed in the positive sense over a 
contour C enclosing the points 2 = 1 and z = e2yi, and the 
determinations of zk and (2 — 1)* being taken so that they 
are real and positive for z real and > 1. We now deform the 
contour C into a circuit Ci consisting of (1) the straight line 
from 2 = 0 to 3 = 1 — 77, where rj > 0; (2) the circle z = 1 + yeH, 
— 7T ^ 0 ^ 7r; and (3) the straight line from s = 1 — rj to 
2 = 0 , followed by a similar circuit C2 around z = e22/\ As 
0 < k < 1, the integral over (2) tends towards zero with 77; 
on (1) and (3) we have zk > 0, and as (2 — 1)* > 0 for 
2 = 1 + 77, we have (2 - 1)* = e~kiri(l - z)k on (1), but 
(2 — l)k = ekvi(l — z)k on (3), so that, letting 77 tend towards 
zero, 

zn+kdz 

2mJCl 2m X e~k"\ 2m.)Cl 2 « Jo 0 -^ (1 - *)*(* - e2**) 
-0 2 n + ^ 2 

_ sin for r 1 

7T Jo 

^2 i r i J i ekni(l - *)*(» - e2**) 

(1 - »)*(» - e2yiY 
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We also have 

e2(n+k)yi e(2n+k)yi+(kTriJ2) 

143 

J /» e2(.n+k)yi 

tonJc, = (e™ - 1)* = (2 sin y) k » 

this being the residue of the integrand at z = êvi. Denoting 
by M the minimum of | z — e2vi \ for 0 ^ z ^ 1, so that 

(10) M = 

sin 2y ( o < 2y ^ f Y 

1 ( f ^ 22/ ^ T ) , 

we then obtain from (9) 

z.w*-»^ IT M Jo (2 SID (2 sin j/)* 

1 r ( l - k)T(n +k+l) 1 1 
T T ( n + 2 ) 'M+(2sin2/) f c ' 

and consequently 

sin 2/ 
E i W * * sin (2i/ + l ) y 

< 

(11) 
Anw sin 2/ 

e*»'Z^„_/'fc-1>e2,'!'i 

ir(i-4)r(n+jfc+i) l 
r r ( n + 2 ) ^ „ « i f sin 2 / ^ ^ „ w (2 sin y)** 

r( i - fe)r( i+f t ) l l 2 l 
ir ' n + 1 ' Jf sin y + !4„«> ' (2 sin y)*+** 

By Stirling's formula, it is readily seen from (1) that 

(12) 
2 c2 

Anw (n+l)k' 
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and from (10), (11) and (12) we obtain, f or 0 < y ^ 7r/4, 

1 " w ' ^ ir n + 1 sin y sin 2y 

c2 1 

< 

(ra + 1)* (2 sin y)k+1 

r ( l - k)T(l + k) 1 1 
ir ' n+ 1*2 2 n 

7T 7T 

+ * (» + !)* /"o 2 N**1 

c3 1 c4 

^ 2 y 

whence 
' « + 1 2/2^(n+l)fc yw' 

1/_C3_ 2W+1 c4 1 (2n+l)*\ 
^ W l ' x " ^ ( n + l ) * ' * ' Tk ) ^ C 6 ' 

from which inequality and (8) we immediately deduce (7). 
For 0 < « < T/4, we also obtain from (10), (11) and (12) 

as) l «.<*%> Kçrfïji-ish (>ivit)-
In (6), make e so small that , S being a given positive quantity, 

| f(x + 2y)+f(x - 2y) - f(x+ 0) - ƒ (as - 0) | < £ 
( 1 4 ) / * \ * 

( 0 ^ j f ^ . < i ) ; 
then 

I - P (f(x+2y)+f(x-m -f(x+0) -f(x-0)>,»>(y)<fc I 
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On account of (13), we also have, bearing in mind the absolute 
integrability oîf(x), 

\l f"\Kx+2y)+f(x-2y)-f(.x+0)-f(x-0))snM(y)dyI 
c« i l r*12 

(16) -yc»-o>|4r< öi^ï>« • i^^CX'^1^^1^^51* 
+ £12 \f{x-2y)\dy+\f{x+0)-f(z-0)\ (l~*)] 

(n + l)Ajsin2€# 

After fixing an e satisfying (14), we determine an N = N(e) 
so large that (16) becomes less than S/2 for n^.N, and (6), (15) 
and (16) give 

I *nw {ƒ(*)} - *(ƒ(* + 0) + f(x - 0)) I < 8 for n ^ N, 

which proves the first part of the theorem. In regard to the 
second part, it is sufficient to observe that, the range in 
question being closed, an e and a Ci may be determined inde­
pendent of x so that (14) and (16) hold uniformly over the 
range in question. 

3. To show that the theorem is not generally true when 
f(x) is integrable without being absolutely integrable, con­
sider the function of period 2w defined by 

ƒ(*) J ^ c o s ^ ) (0 <Lx ^2TT) . 

Riemann* has shown that, for 0 < v < §, the nth term in 
the Fourier series corresponding to this function has the 
asymptotic expression 

(-j= sin (2Vn-nx + 1Ç\ + en) n(1-**4, lim cn = 0, 

*B. Riemann, "Ueber die Darstellbarkeit einer Function durch eine 
trigonometrische Reihe," Gesammelte Werke, second edition (Leipzig, 
1892), pp. 227-265. See pp. 260 et seq. 
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and, as for the summability (Ck) of the series ^0 + ^ 1 + • • • 
+ Un + • " it is necessary that* 

lim -f = 0, 
n—ac ft 

it follows that, for any h < J, we obtain a Fourier series which 
is not summable (Ck) for any value of x by selecting a v such 
that 1 — 2v > 4&. By a suitable modification of Riemann's 
example, we may construct a Fourier series with the corre­
sponding property for any k < J; for 1 > k ^ J, I have not 
been able to decide whether the theorem is true for all in­
tegrate (and not only absolutely integrable) functions or not. f 

CHICAGO, I I I . , 
February 3, 1913. 

NOTE ON PIERPONTS THEORY OF FUNCTIONS. 

IN a review, written some years ago, of Pierpont's Theory of 
Functions of Real Variables, I made the following incorrect 
statement with regard to the possibility of reversing the order 
of differentiation of a f unction ƒ (a:, y):t 

" Under the assumption that fx' exists on y = b, fy
f on 

x = a, and that one of them is approached uniformly, it 
follows as a corollary to the theorem of Moore mentioned 
above, that the second derivatives fxy", fy/ exist at (a, b) 
and are equal." 

The assumptions should be that fx' exists on x = a, fy' on 
y = by and that the derivative f or x at x = a of the quotient 
f(x> y)l(y — b) is approached uniformly for values of y different 
from 6. These are the hypotheses, in different words, which 
Professor E. H. Moore uses in the Lectures referred to on 
page 124 of the review, and which I intended to reproduce. 

I am indebted for this correction to Mr. G. A. Pfeiffer. In 
a recent letter to me he cited the example ƒ = xy(x2—y2)/(x2+y2) 
with the agreement that ƒ shall be zero for x = y = 0, which 

* S. Chapman, 1. c , p. 379. 
t For fc = 1, the theorem holds for any integrable function; see for the 

case k = 1 (the theorem holds a fortiori for k > 1) L. Fejér, "Unter-
suchungen über trigonometrische Reihen," Math. Annalen, vol. 58 (1904), 
pp. 51-69. 

J BULLETIN, vol. 13 (1906), page 125. 


