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ON THE SUMMABILITY OF FOURIER'S SERIES. 

B Y DR. T. H . GRONWALL. 

(Read before the American Mathematical Society, February 22, 1913.) 

1. LET 
A w - (ft+P(ft + 2)-..(ft+n) 

An ~ n\ 
(1) 

r(» + fc+i) 
= r ( f c + i ) r ( « + i ) («-1.2.3, . . -) , A w = i , 

so that 

then the identity 
00 I 1 1 00 00 

XU»W«" = (1 _ „)*+•! = Y=-z • ( ï ^ 5 » = S»* • X ^ ' ^ * " 

gives 

(3) 4 . » = S il/*-» = É i* - /*-» . 
i/=0 i>=0 

The nth Cesàro mean of order h of a given series ô + u\ 
+ • • • + un + • • • is, by definition, equal to 

1 _n . i ^ y 

A-n i/=0 **-n v=0 fi—0 

(both definitions being equivalent on account of (3)), and if 
lim Sn™ exists and equals s, the given series is said to be 
w=oo 

summable by Cesàro's means of order k, or briefly, summable 
(CJc), with the sum s. 

In the present note, I propose to give a simplified proof of 
the following theorem, due to Riesz and Chapman:* 

* M. Riesz, "Sur les séries de Dirichlet et les séries entières," Comptes 
rendus de VAcadémie des Sciences (Paris), vol. 149 (1909), pp. 909-912 
(gives no details of the çroof). 

S. Chapman, "Non-integral orders of summability of series and in
tegrals," Proceedings of the London Mathematical Society, ser. 2, vol. 9 
(1911), pp. 369-409. (See p. 390.) 
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Let fix) be a function defined in the interval — TT ^ x ^ wf 

and such that in this interval \ fix) \ is integrable in the Lebesgue 
sense;* then the Fourier series for fix) is summable (Ck) for 
any k > 0 with the sum %(f(x + 0) + fix — 0)) = § lim 

(ƒ(# + «) + fix — e)) at any point where this limit exists, f 
The convergence of the Ceshro means of order k towards this 
limit is uniform on any closed range for every point of which 
fix) is bounded and fix + 0) + fix — 0) exists uniformly. 

2. To prove this theorem, we start from the well known 
expression for the sum of the n + 1 first terms of the Fourier 
series for fix). 

s*< u - l*"" -*8* J _ O N sin (271+1)?/ , Sn{fix)} = - I f{x + 2y) - j — dy 
<w+x)i2 b i n y 

""* x sin (2n + l)y , 
/ ( * + 2y) — ^ <*2/ "" * J-<>. 

on account of the periodicity of f(x), as established in foot
note *, and this expression is easily transformed into 

'M*)) -I r\f(x+2y)+f(x-2y))s{n(l?i'l1)ydy, 
7T JQ bil l y 

and the nth Cesàro mean of order k of the Fourier series in 
question becomes, by (4), 

Sn™{f{x)) = I r'\f(x + 2y) +fix - 2y))sn™iy)dy, 
IT Jo 

The simplification in the present proof lies in the method of arriving 
at the inequality (7), which is obtained by Chapman by a method 
equivalent to the application of Euler's summation formula to the expres
sion. 

The present method is applicable also to the corresponding problem in 
the expansion of a function of two variables in a series of spherical har
monics; see my forthcoming papers in the Mathematische Annalen: "Über 
die Laplace'sche Reihe" and "Über die Summirbarkeit der Reihen von 
Laplace und Legendre." 

* In Chapman's statement of the theorem, f(x) is only required to be 
integrable in the Lebesgue sense without being absolutely integrable (both 
requirements being equivalent only when f(x) is bounded for — x ̂  x ^ ir). 
In Art. 3 of the present note, it is shown by an example that in this form 
the theorem is not generally true. 

t For x = ±TT, this limit should be replaced by \i ƒ[( — ir + 0) -f f(ir—0)], 
which may be included in the expression above by defining fix) outside of 
the interval — ir ̂  x £jk ir as periodic with the period 2ir. 
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where 

Making f(x) = 1, we obtain 

l = , „ « { ! } = ! r'\nw(y)dy, 

and consequently 

»-w {ƒ(*)} - * ( ƒ ( * + o) + ƒ ( * - o)) 

(6) = £ Jf"1 (ƒ(* + 2y) + fix - 2y) - f(x + 0) 

- / ( a : - 0 ) K « ( y ) c f o = - I + - , 
?r Jo, ft J e 

where 0 < e < x/4. 
We now assume & < 1;* the main point in our proof con

sists in showing that 

(7) l f* | snM(y) \dy<Cl (n = 2, 3, 4, • . . ) , 
« %/o 

where ci, as well as c2, c3, • • • which will be introduced later, 
are positive constants independent of n. We decompose our 
integral as follows: 

As we have 

sin (2v + l)y 

sm y 
1 + 2 2 cos 2p,y 

it follows that 

£>2r+l <£2n+l , 

I *n(fc%) I ^ XÖ5 • (2n + 1) Ê ^n-, (^1 } = 2 n + l , 

and consequently 
1 /•ir/(2»+l) 1 /»ir/(2»+l) 

(8) - | «.<*> (y) | <*y < - I (2n + 1)<& = 1. 
TT Jo ^ Jo 

* A series being (uniformly) summable (Ck) is also (uniformly) summable 
{Ck') with the same sum when k' >k (see Chapman, 1. a ) , and it is therefore 
sufficient to prove our theorem f or k < 1. 
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To estimate the second part of our integral, we observe that, 
for | z | < 1, 

1 °° 

1 oo op 

or writing 1/z instead of zr 

zk+i 
* = £*-nZ^^-v^, 

whence, by Cauchy's theorem, 

(W Y A (Hg2^i = - L f ^ ^ , 
W t S " ^ 2 « J , (2 - l)*(s - e2*") 

the integration being performed in the positive sense over a 
contour C enclosing the points 2 = 1 and z = e2yi, and the 
determinations of zk and (2 — 1)* being taken so that they 
are real and positive for z real and > 1. We now deform the 
contour C into a circuit Ci consisting of (1) the straight line 
from 2 = 0 to 3 = 1 — 77, where rj > 0; (2) the circle z = 1 + yeH, 
— 7T ^ 0 ^ 7r; and (3) the straight line from s = 1 — rj to 
2 = 0 , followed by a similar circuit C2 around z = e22/\ As 
0 < k < 1, the integral over (2) tends towards zero with 77; 
on (1) and (3) we have zk > 0, and as (2 — 1)* > 0 for 
2 = 1 + 77, we have (2 - 1)* = e~kiri(l - z)k on (1), but 
(2 — l)k = ekvi(l — z)k on (3), so that, letting 77 tend towards 
zero, 

zn+kdz 

2mJCl 2m X e~k"\ 2m.)Cl 2 « Jo 0 -^ (1 - *)*(* - e2**) 
-0 2 n + ^ 2 

_ sin for r 1 

7T Jo 

^2 i r i J i ekni(l - *)*(» - e2**) 

(1 - »)*(» - e2yiY 
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We also have 

e2(n+k)yi e(2n+k)yi+(kTriJ2) 

143 

J /» e2(.n+k)yi 

tonJc, = (e™ - 1)* = (2 sin y) k » 

this being the residue of the integrand at z = êvi. Denoting 
by M the minimum of | z — e2vi \ for 0 ^ z ^ 1, so that 

(10) M = 

sin 2y ( o < 2y ^ f Y 

1 ( f ^ 22/ ^ T ) , 

we then obtain from (9) 

z.w*-»^ IT M Jo (2 SID (2 sin j/)* 

1 r ( l - k)T(n +k+l) 1 1 
T T ( n + 2 ) 'M+(2sin2/) f c ' 

and consequently 

sin 2/ 
E i W * * sin (2i/ + l ) y 

< 

(11) 
Anw sin 2/ 

e*»'Z^„_/'fc-1>e2,'!'i 

ir(i-4)r(n+jfc+i) l 
r r ( n + 2 ) ^ „ « i f sin 2 / ^ ^ „ w (2 sin y)** 

r( i - fe)r( i+f t ) l l 2 l 
ir ' n + 1 ' Jf sin y + !4„«> ' (2 sin y)*+** 

By Stirling's formula, it is readily seen from (1) that 

(12) 
2 c2 

Anw (n+l)k' 
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and from (10), (11) and (12) we obtain, f or 0 < y ^ 7r/4, 

1 " w ' ^ ir n + 1 sin y sin 2y 

c2 1 

< 

(ra + 1)* (2 sin y)k+1 

r ( l - k)T(l + k) 1 1 
ir ' n+ 1*2 2 n 

7T 7T 

+ * (» + !)* /"o 2 N**1 

c3 1 c4 

^ 2 y 

whence 
' « + 1 2/2^(n+l)fc yw' 

1/_C3_ 2W+1 c4 1 (2n+l)*\ 
^ W l ' x " ^ ( n + l ) * ' * ' Tk ) ^ C 6 ' 

from which inequality and (8) we immediately deduce (7). 
For 0 < « < T/4, we also obtain from (10), (11) and (12) 

as) l «.<*%> Kçrfïji-ish (>ivit)-
In (6), make e so small that , S being a given positive quantity, 

| f(x + 2y)+f(x - 2y) - f(x+ 0) - ƒ (as - 0) | < £ 
( 1 4 ) / * \ * 

( 0 ^ j f ^ . < i ) ; 
then 

I - P (f(x+2y)+f(x-m -f(x+0) -f(x-0)>,»>(y)<fc I 
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On account of (13), we also have, bearing in mind the absolute 
integrability oîf(x), 

\l f"\Kx+2y)+f(x-2y)-f(.x+0)-f(x-0))snM(y)dyI 
c« i l r*12 

(16) -yc»-o>|4r< öi^ï>« • i^^CX'^1^^1^^51* 
+ £12 \f{x-2y)\dy+\f{x+0)-f(z-0)\ (l~*)] 

(n + l)Ajsin2€# 

After fixing an e satisfying (14), we determine an N = N(e) 
so large that (16) becomes less than S/2 for n^.N, and (6), (15) 
and (16) give 

I *nw {ƒ(*)} - *(ƒ(* + 0) + f(x - 0)) I < 8 for n ^ N, 

which proves the first part of the theorem. In regard to the 
second part, it is sufficient to observe that, the range in 
question being closed, an e and a Ci may be determined inde
pendent of x so that (14) and (16) hold uniformly over the 
range in question. 

3. To show that the theorem is not generally true when 
f(x) is integrable without being absolutely integrable, con
sider the function of period 2w defined by 

ƒ(*) J ^ c o s ^ ) (0 <Lx ^2TT) . 

Riemann* has shown that, for 0 < v < §, the nth term in 
the Fourier series corresponding to this function has the 
asymptotic expression 

(-j= sin (2Vn-nx + 1Ç\ + en) n(1-**4, lim cn = 0, 

*B. Riemann, "Ueber die Darstellbarkeit einer Function durch eine 
trigonometrische Reihe," Gesammelte Werke, second edition (Leipzig, 
1892), pp. 227-265. See pp. 260 et seq. 
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and, as for the summability (Ck) of the series ^0 + ^ 1 + • • • 
+ Un + • " it is necessary that* 

lim -f = 0, 
n—ac ft 

it follows that, for any h < J, we obtain a Fourier series which 
is not summable (Ck) for any value of x by selecting a v such 
that 1 — 2v > 4&. By a suitable modification of Riemann's 
example, we may construct a Fourier series with the corre
sponding property for any k < J; for 1 > k ^ J, I have not 
been able to decide whether the theorem is true for all in
tegrate (and not only absolutely integrable) functions or not. f 

CHICAGO, I I I . , 
February 3, 1913. 

NOTE ON PIERPONTS THEORY OF FUNCTIONS. 

IN a review, written some years ago, of Pierpont's Theory of 
Functions of Real Variables, I made the following incorrect 
statement with regard to the possibility of reversing the order 
of differentiation of a f unction ƒ (a:, y):t 

" Under the assumption that fx' exists on y = b, fy
f on 

x = a, and that one of them is approached uniformly, it 
follows as a corollary to the theorem of Moore mentioned 
above, that the second derivatives fxy", fy/ exist at (a, b) 
and are equal." 

The assumptions should be that fx' exists on x = a, fy' on 
y = by and that the derivative f or x at x = a of the quotient 
f(x> y)l(y — b) is approached uniformly for values of y different 
from 6. These are the hypotheses, in different words, which 
Professor E. H. Moore uses in the Lectures referred to on 
page 124 of the review, and which I intended to reproduce. 

I am indebted for this correction to Mr. G. A. Pfeiffer. In 
a recent letter to me he cited the example ƒ = xy(x2—y2)/(x2+y2) 
with the agreement that ƒ shall be zero for x = y = 0, which 

* S. Chapman, 1. c , p. 379. 
t For fc = 1, the theorem holds for any integrable function; see for the 

case k = 1 (the theorem holds a fortiori for k > 1) L. Fejér, "Unter-
suchungen über trigonometrische Reihen," Math. Annalen, vol. 58 (1904), 
pp. 51-69. 

J BULLETIN, vol. 13 (1906), page 125. 


