ON THE SUMMABILITY OF FOURIER'S SERIES.

BY DR. T. H. GRONWALL.
(Read before the American Mathematical Society, February 22, 1913.)

1. Let

$$
\begin{align*}
A_{n}^{(k)} & =\frac{(k+1)(k+2) \cdots(k+n)}{n!} \\
& =\frac{\Gamma(n+k+1)}{\Gamma(k+1) \Gamma(n+1)} \quad(n=1,2,3, \cdots), \quad A_{0}^{(k)}=1, \tag{1}
\end{align*}
$$

so that

$$
\begin{equation*}
\frac{1}{(1-z)^{k}}=\sum_{n=0}^{\infty} A_{n}^{(k-1)} z^{n}, \quad(|z|<1) \tag{2}
\end{equation*}
$$

then the identity
$\sum_{n=0}^{\infty} A_{n}{ }^{(k)} z^{n}=\frac{1}{(1-z)^{k+1}}=\frac{1}{1-z} \cdot \frac{1}{(1-z)^{k}}=\sum_{\mu=0}^{\infty} z^{\mu} \cdot \sum_{\nu=0}^{\infty} A_{\nu}{ }^{(k-1)} z^{\nu}$ gives

$$
\begin{equation*}
A_{n}{ }^{(k)}=\sum_{\nu=0}^{n} A_{\nu}{ }^{(k-1)}=\sum_{\nu=0}^{n} A_{n-\nu}{ }^{(k-1)} . \tag{3}
\end{equation*}
$$

The nth Cesàro mean of order k of a given series $u_{0}+u_{1}$ $+\cdots+u_{n}+\cdots$ is, by definition, equal to

$$
\begin{equation*}
s_{n}{ }^{(k)}=\frac{1}{A_{n}{ }^{(k)}} \sum_{\nu=0}^{n} A_{n-\nu}{ }^{(k)} u_{\nu}=\frac{1}{A_{n}{ }^{(k)}} \sum_{\nu=0}^{n} A_{n-\nu}{ }^{(k-1)} \sum_{\mu=0}^{\nu} u_{\mu} \tag{4}
\end{equation*}
$$

(both definitions being equivalent on account of (3)), and if $\lim _{n=\infty} s_{n}{ }^{(k)}$ exists and equals s, the given series is said to be summable by Cesàro's means of order k, or briefly, summable $(C k)$, with the sum s.

In the present note, I propose to give a simplified proof of the following theorem, due to Riesz and Chapman:*

[^0]Let $f(x)$ be a function defined in the interval $-\pi \leqq x \leqq \pi$, and such that in this interval $|f(x)|$ is integrable in the Lebesgue sense;* then the Fourier series for $f(x)$ is summable (Ck) for any $k>0$ with the sum $\frac{1}{2}(f(x+0)+f(x-0))=\frac{1}{2} \lim _{\epsilon=0}$ $(f(x+\epsilon)+f(x-\epsilon))$ at any point where this limit exists. \dagger The convergence of the Cesàro means of order k towards this limit is uniform on any closed range for every point of which $f(x)$ is bounded and $f(x+0)+f(x-0)$ exists uniformly.
2. To prove this theorem, we start from the well known expression for the sum of the $n+1$ first terms of the Fourier series for $f(x)$.

$$
\begin{aligned}
s_{n}\{f(x)\} & =\frac{1}{\pi} \int_{-(\pi+x) 2}^{(\pi-x) / 2} f(x+2 y) \frac{\sin (2 n+1) y}{\sin y} d y \\
& =\frac{1}{\pi} \int_{-(\pi / 2)}^{\pi / 2} f(x+2 y) \frac{\sin (2 n+1) y}{\sin y} d y
\end{aligned}
$$

on account of the periodicity of $f(x)$, as established in footnote ${ }^{*}$, and this expression is easily transformed into

$$
s_{n}\{f(x)\}=\frac{1}{\pi} \int_{0}^{\pi / 2}(f(x+2 y)+f(x-2 y)) \frac{\sin (2 n+1) y}{\sin y} d y
$$

and the nth Cesàro mean of order k of the Fourier series in question becomes, by (4),

$$
s_{n}{ }^{(k)}\{f(x)\}=\frac{1}{\pi} \int_{0}^{\pi / 2}(f(x+2 y)+f(x-2 y)) s_{n}{ }^{(k)}(y) d y
$$

[^1]where
\[

$$
\begin{equation*}
s_{n}{ }^{(k)}(y)=\frac{1}{A_{n}{ }^{(k)}} \sum_{\nu=0}^{n} A_{n-\nu}{ }^{(k-1)} \frac{\sin (2 \nu+1) y}{\sin y} . \tag{5}
\end{equation*}
$$

\]

Making $f(x)=1$, we obtain

$$
1=s_{n}{ }^{(k)}\{1\}=\frac{2}{\pi} \int_{0}^{\pi / 2} s_{n}^{(k)}(y) d y
$$

and consequently

$$
\begin{align*}
& s_{n}{ }^{(k)}\{f(x)\}-\frac{1}{2}(f(x+0)+f(x-0)) \\
& \qquad=\frac{1}{\pi} \int_{0}^{\pi / 2}(f(x+2 y)+f(x-2 y)-f(x+0) \tag{6}\\
& \quad-f(x-0)) s_{n}^{(k)}(y) d y=\frac{1}{\pi} \int_{0}^{e}+\frac{1}{\pi} \int_{e}^{\pi / 2}
\end{align*}
$$

where $0<\epsilon<\pi / 4$.
We now assume $k<1$;* the main point in our proof consists in showing that

$$
\begin{equation*}
\frac{1}{\pi} \int_{0}^{\pi / 4}\left|s_{n}^{(k)}(y)\right| d y<c_{1} \quad(n=2,3,4, \cdots) \tag{7}
\end{equation*}
$$

where c_{1}, as well as c_{2}, c_{3}, \cdots which will be introduced later, are positive constants independent of n. We decompose our integral as follows:

$$
\frac{1}{\pi} \int_{0}^{\pi / 4}\left|s_{n}{ }^{(k)}(y)\right| d y=\frac{1}{\pi} \int_{0}^{\pi /(2 n+1)}+\frac{1}{\pi} \int_{\pi /(2 n+1)}^{\pi / 4}
$$

As we have

$$
\left|\frac{\sin (2 \nu+1) y}{\sin y}\right|=\left|1+2 \sum_{\mu=1}^{\nu} \cos 2 \mu y\right| \leqq 2 \nu+1 \leqq 2 n+1
$$

it follows that

$$
\left|s_{n}{ }^{(k)}(y)\right| \leqq \frac{1}{A_{n}{ }^{(k)}} \cdot(2 n+1) \sum_{\nu=0}^{n} A_{n-\nu}{ }^{(k-1)}=2 n+1
$$

and consequently

$$
\text { (8) } \frac{1}{\pi} \int_{0}^{\pi /(2 n+1)}\left|s_{n}^{(k)}(y)\right| d y<\frac{1}{\pi} \int_{0}^{\pi /(2 n+1)}(2 n+1) d y=1
$$

[^2]To estimate the second part of our integral, we observe that, for $|z|<1$,

$$
\begin{aligned}
\frac{1}{1-z e^{2 y i}} & =\sum_{n=0}^{\infty} z^{n} e^{2 n y i}, \\
\frac{1}{(1-z)^{k}\left(1-z e^{2 v i}\right)} & =\sum_{n=0}^{\infty} A_{n}{ }^{(k-1)} z^{n} \cdot \sum_{n=0}^{\infty} z^{n} e^{2 n y i} \\
& =\sum_{n=0}^{\infty} z^{n} \sum_{v=0}^{n} A_{n-v}(k-1) e^{2 v y i},
\end{aligned}
$$

or writing $1 / z$ instead of z,

$$
\frac{z^{k+1}}{(z-1)^{k}\left(z-e^{2 y i}\right)}=\sum_{n=0}^{\infty} z^{-n} \sum_{v=0}^{n} A_{n-v}{ }^{(k-1)} e^{2 v y i},
$$

whence, by Cauchy's theorem,

$$
\begin{equation*}
\left.\sum_{v=0}^{n} A_{n-v}^{(k-1)} e^{2 v y i}=\frac{1}{2 \pi i} \int_{\sigma} \frac{z^{n+k} d z}{(z-1)^{k}\left(z-e^{2} z i\right.}\right), \tag{9}
\end{equation*}
$$

the integration being performed in the positive sense over a contour C enclosing the points $z=1$ and $z=e^{2 y i}$, and the determinations of z^{k} and $(z-1)^{k}$ being taken so that they are real and positive for z real and >1. We now deform the contour C into a circuit C_{1} consisting of (1) the straight line from $z=0$ to $z=1-\eta$, where $\eta>0$; (2) the circle $z=1+\eta e^{\theta i}$, $-\pi \leqq \theta \leqq \pi$; and (3) the straight line from $z=1-\eta$ to $z=0$, followed by a similar circuit C_{2} around $z=e^{2 y i}$. As $0<k<1$, the integral over (2) tends towards zero with η; on (1) and (3) we have $z^{k}>0$, and as $(z-1)^{k}>0$ for $z=1+\eta$, we have $(z-1)^{k}=e^{-k \pi i}(1-z)^{k}$ on (1), but $(z-1)^{k}=e^{k \pi i}(1-z)^{k}$ on (3), so that, letting η tend towards zero,

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{O_{1}}= \\
& \frac{1}{2 \pi i} \int_{0}^{1} \frac{z^{n+k} d z}{e^{-k \pi i}(1-z)^{k}\left(z-e^{2 y i}\right)} \\
& \quad+\frac{1}{2 \pi i} \int_{1}^{0} \frac{z^{n+k} d z}{e^{k \pi i}(1-z)^{k}\left(z-e^{2 y i}\right)} \\
& = \\
& =\frac{\sin k \pi}{\pi} \int_{0}^{1} \frac{z^{n+k} d z}{(1-z)^{k}\left(z-e^{2 y i}\right)}
\end{aligned}
$$

We also have

$$
\frac{1}{2 \pi i} \int_{c_{2}}=\frac{e^{2(n+k) y i}}{\left(e^{2 y i}-1\right)^{k}}=\frac{e^{(2 n+k) y i+(k \pi i / 2)}}{(2 \sin y)^{k}},
$$

this being the residue of the integrand at $z=e^{2 y i}$. Denoting by M the minimum of $\left|z-e^{2 y i}\right|$ for $0 \leqq z \leqq 1$, so that

$$
M=\left\{\begin{array}{l}
\sin 2 y \quad\left(0<2 y \leqq \frac{\pi}{2}\right), \tag{10}\\
1 \quad\left(\frac{\pi}{2} \leqq 2 y \leqq \pi\right),
\end{array}\right.
$$

we then obtain from (9)

$$
\begin{aligned}
\left|\sum_{\nu=0}^{n} A_{n-\nu}^{(k-1)} e^{2 \nu y i}\right| & <\frac{1}{\pi M} \int_{0}^{1} z^{n+k}(1-z)^{-k} d z+\frac{1}{(2 \sin y)^{k}} \\
& =\frac{1}{\pi} \frac{\Gamma(1-k) \Gamma(n+k+1)}{\Gamma(n+2)} \cdot \frac{1}{M}+\frac{1}{(2 \sin y)^{k}},
\end{aligned}
$$

and consequently
$\left|s_{n}{ }^{(k)}(y)\right|=\frac{1}{A_{n}{ }^{(k)} \sin y}\left|\sum_{\nu=0}^{n} A_{n-\nu}{ }^{(k-1)} \sin (2 \nu+1) y\right|$

$$
\begin{align*}
& \leqq \frac{1}{A_{n}^{(k)} \sin y}\left|e^{y i} \sum_{\nu=0}^{n} A_{n-\nu}{ }^{(k-1)} e^{2 \nu y i}\right| \tag{11}\\
& <\frac{1}{\pi} \frac{\Gamma(1-k) \Gamma(n+k+1)}{\Gamma(n+2) A_{n}^{(k)}} \cdot \frac{1}{M \sin y}+\frac{2}{A_{n}^{(k)}} \cdot \frac{1}{(2 \sin y)^{k+1}} \\
& =\frac{\Gamma(1-k) \Gamma(1+k)}{\pi} \cdot \frac{1}{n+1} \cdot \frac{1}{M \sin y}+\frac{2}{A_{n}^{(k)}} \cdot \frac{1}{(2 \sin y)^{k+1}} .
\end{align*}
$$

By Stirling's formula, it is readily seen from (1) that

$$
\begin{equation*}
\frac{2}{A_{n}^{(k)}}<\frac{c_{2}}{(n+1)^{k}}, \tag{12}
\end{equation*}
$$

and from (10), (11) and (12) we obtain, for $0<y \leqq \pi / 4$,

$$
\left|s_{n}{ }^{(k)}(y)\right|<\frac{\Gamma(1-k) \Gamma(1+k)}{\pi} \cdot \frac{1}{n+1} \cdot \frac{1}{\sin y \sin 2 y}
$$

$$
+\frac{c_{2}}{(n+1)^{k}} \cdot \frac{1}{(2 \sin y)^{k+1}}
$$

$$
\leqq \frac{\Gamma(1-k) \Gamma(1+k)}{\pi} \cdot \frac{1}{n+1} \cdot \frac{1}{\frac{2}{\pi} y \cdot \frac{2}{\pi} \cdot 2 y}
$$

$$
+\frac{c_{2}}{(n+1)^{k}} \cdot \frac{1}{\left(2 \cdot \frac{2}{\pi} y\right)^{k+1}}
$$

whence

$$
=\frac{c_{3}}{n+1} \cdot \frac{1}{y^{2}}+\frac{c_{4}}{(n+1)^{k}} \cdot \frac{1}{y^{k+1}}
$$

$$
\begin{array}{r}
\frac{1}{\pi} \int_{\pi /(2 n+1)}^{\pi / 4}\left|s_{n}^{(k)}(y)\right| d y<\frac{1}{\pi} \int_{\pi /(2 n+1)}^{\pi / 4}\left(\frac{c_{3}}{n+1} \cdot \frac{1}{y^{2}}+\frac{c_{4}}{(n+1)^{k}} \cdot \frac{1}{y^{k+1}}\right) d y \\
\quad<\frac{1}{\pi}\left(\frac{c_{3}}{n+1} \cdot \frac{2 n+1}{\pi}+\frac{c_{4}}{(n+1)^{k}} \cdot \frac{1}{k} \cdot \frac{(2 n+1)^{k}}{\pi^{k}}\right)<c_{5}
\end{array}
$$

from which inequality and (8) we immediately deduce (7).
For $0<\epsilon<\pi / 4$, we also obtain from (10), (11) and (12)

$$
\begin{equation*}
\left|s_{n}^{(k)}(y)\right|<\frac{c_{6}}{(n+1)^{k}} \cdot \frac{1}{\sin ^{2} \epsilon} \quad\left(\epsilon \leqq y \leqq \frac{\pi}{2}\right) \tag{13}
\end{equation*}
$$

In (6), make ϵ so small that, δ being a given positive quantity,

$$
\begin{align*}
\mid f(x+2 y)+ & f(x-2 y)-f(x+0)-f(x-0) \left\lvert\,<\frac{\delta}{2 c_{1}}\right. \tag{14}\\
& \left(0 \leqq y \leqq \epsilon<\frac{\pi}{4}\right)
\end{align*}
$$

then

$$
\begin{align*}
& \left|\frac{1}{\pi} \int_{0}^{e}(f(x+2 y)+f(x-2 y)-f(x+0)-f(x-0)) s_{n}{ }^{(k)}(y) d y\right| \\
& \quad<\frac{1}{\pi} \int_{0}^{e} \frac{\delta}{2 c_{1}}\left|s_{n}{ }^{(k)}(y)\right| d y<\frac{\delta}{2 c_{1}} \cdot \frac{1}{\pi} \int_{0}^{\pi / 4}\left|s_{n}{ }^{(k)}(y)\right| d y=\frac{\delta}{2} \tag{15}
\end{align*}
$$

On account of (13), we also have, bearing in mind the absolute integrability of $f(x)$,

$$
\begin{aligned}
& \left|\frac{1}{\pi} \int_{e}^{\pi / 2}(f(x+2 y)+f(x-2 y)-f(x+0)-f(x-0)) s_{n}{ }^{(k)}(y) d y\right| \\
& \left.\quad<\frac{c_{6}}{(n+1)^{k}} \cdot \frac{1}{\sin ^{2} \epsilon} \cdot \frac{1}{\pi} \int_{\epsilon}^{\bullet \pi / 2} \right\rvert\, f(x+2 y)+f(x-2 y)-f(x+0) \\
& \quad-f(x-0) \left\lvert\, d y<\frac{c_{6}}{(n+1)^{k}} \cdot \frac{1}{\pi \sin ^{2} \epsilon}\left[\int_{\epsilon}^{\pi / 2}|f(x+2 y)| d y\right.\right. \\
& \left.\quad+\int_{e}^{\pi / 2}|f(x-2 y)| d y+|f(x+0)-f(x-0)|\left(\frac{\pi}{2}-\epsilon\right)\right] \\
& \quad<\frac{c_{7}}{(n+1)^{k} \sin ^{2} \epsilon} .
\end{aligned}
$$

After fixing an ϵ satisfying (14), we determine an $N=N(\epsilon)$ so large that (16) becomes less than $\delta / 2$ for $n \geqq N$, and (6), (15) and (16) give

$$
\left|s_{n}{ }^{(k)}\{f(x)\}-\frac{1}{2}(f(x+0)+f(x-0))\right|<\delta \text { for } n \geqq N,
$$

which proves the first part of the theorem. In regard to the second part, it is sufficient to observe that, the range in question being closed, an ϵ and a c_{1} may be determined independent of x so that (14) and (16) hold uniformly over the range in question.
3. To show that the theorem is not generally true when $f(x)$ is integrable without being absolutely integrable, consider the function of period 2π defined by

$$
f(x)=\frac{d}{d x}\left(x^{\nu} \cos \frac{1}{x}\right) \quad(0 \leqq x \leqq 2 \pi) .
$$

Riemann* has shown that, for $0<\nu<\frac{1}{2}$, the nth term in the Fourier series corresponding to this function has the asymptotic expression

$$
\left(\frac{1}{2 \sqrt{\pi}} \sin \left(2 \sqrt{n}-n x+\frac{\pi}{4}\right)+\epsilon_{n}\right) n^{(1-2 \nu) / 4}, \quad \lim _{n=\infty} \epsilon_{n}=0
$$

[^3]and, as for the summability (Ck) of the series $u_{0}+u_{1}+\cdots$ $+u_{n}+\cdots$ it is necessary that*
$$
\lim _{n=\infty} \frac{u_{n}}{n^{k}}=0
$$
it follows that, for any $k<\frac{1}{4}$, we obtain a Fourier series which is not summable ($C k$) for any value of x by selecting a ν such that $1-2 \nu>4 k$. By a suitable modification of Riemann's example, we may construct a Fourier series with the corresponding property for any $k<\frac{1}{2}$; for $1>k \geqq \frac{1}{2}$, I have not been able to decide whether the theorem is true for all integrable (and not only absolutely integrable) functions or not. \dagger

Chicago, Ill.,
February 3, 1913.

NOTE ON PIERPONT'S THEORY OF FUNCTIONS.

In a review, written some years ago, of Pierpont's Theory of Functions of Real Variables, I made the following incorrect statement with regard to the possibility of reversing the order of differentiation of a function $f(x, y)$: \ddagger
" Under the assumption that f_{x}^{\prime} exists on $y=b, f_{y}^{\prime}$ on $x=a$, and that one of them is approached uniformly, it follows as a corollary to the theorem of Moore mentioned above, that the second derivatives $f_{x y}{ }^{\prime \prime}, f_{y x}{ }^{\prime \prime}$ exist at (a, b) and are equal."

The assumptions should be that $f_{x}{ }^{\prime}$ exists on $x=a, f_{y}{ }^{\prime}$ on $y=b$, and that the derivative for x at $x=a$ of the quotient $f(x, y) /(y-b)$ is approached uniformly for values of y different from b. These are the hypotheses, in different words, which Professor E. H. Moore uses in the Lectures referred to on page 124 of the review, and which I intended to reproduce.

I am indebted for this correction to Mr. G. A. Pfeiffer. In a recent letter to me he cited the example $f=x y\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right)$ with the agreement that f shall be zero for $x=y=0$, which

[^4]
[^0]: * M. Riesz, "Sur les séries de Dirichlet et les séries entières," Comptes rendus de l'Académie des Sciences (Paris), vol. 149 (1909), pp. 909-912 (gives no details of the proof).
 S. Chapman, "Non-integral orders of summability of series and integrals," Proceedings of the London Mathematical Society, ser. 2, vol. 9 (1911), pp. 369-409. (See p. 390.)

[^1]: The simplification in the present proof lies in the method of arriving at the inequality (7), which is obtained by Chapman by a method equivalent to the application of Euler's summation formula to the expression.

 The present method is applicable also to the corresponding problem in the expansion of a function of two variables in a series of spherical harmonics; see my forthcoming papers in the Mathematische Annalen: "Über die Laplace'sche Reihe", and "Über die Summirbarkeit der Reihen von Laplace und Legendre."

 * In Chapman's statement of the theorem, $f(x)$ is only required to be integrable in the Lebesgue sense without being absolutely integrable (both requirements being equivalent only when $f(x)$ is bounded for $-\pi \leqq x \leqq \pi)$. In Art. 3 of the present note, it is shown by an example that in this form the theorem is not generally true.
 \dagger For $x= \pm \pi$, this limit should be replaced by $1 / 2 f[(-\pi+0)+f(\pi-0)]$, which may be included in the expression above by defining $f(x)$ outside of the interval $-\pi \leqq x \leqq \pi$ as periodic with the period 2π.

[^2]: * A series being (uniformly) summable ($C k$) is also (uniformly) summable ($C k^{\prime}$) with the same sum when $k^{\prime}>k$ (see Chapman, l. c.), and it is therefore sufficient to prove our theorem for $k<1$.

[^3]: * B. Riemann, "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe," Gesammelte Werke, second edition (Leipzig, 1892), pp. 227-265. See pp. 260 et seq.

[^4]: *S. Chapman, l. c., p. 379.
 \dagger For $k \geqq 1$, the theorem holds for any integrable function; see for the case $k=1$ (the theorem holds a fortiori for $k>1$) L. Fejér, "Untersuchungen über trigonometrische Reihen," Math. Annalen, vol. 58 (1904), pp. 51-69.
 \ddagger Bulletin, vol. 13 (1906), page 125.

