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ON THE SUMMABILITY OF FOURIER’S SERIES.

BY DR. T. H. GRONWALL.

(Read before the American Mathematical Society, February 22, 1913.)
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The nth Cesdro mean of order k£ of a given series uy -+ u;
4+ oo F U+ --- is, by deﬁnition, equal to
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(both definitions being equivalent on account of (3)), and if
lim $,® exists and equals s, the given series is said to be

summable by Cesiro’s means of order %, or briefly, summable
(Ck), with the sum s.

In the present note, I propose to give a simplified proof of
the following theorem, due to Riesz and Chapman:*

* M. Riesz, “Sur les séries de Dirichlet et les séries entiéres,” Comptes
rendus de U'Académie des Sciences (Paris), vol. 149 (1909), pp. 909-912
(gives no details of the proof).

S. Chapman, “Non-integral orders of summability of series and in-
tegrals,” Proceedings of the London Mathematical Society, ser. 2, vol. 9
(1911), pp. 369-409. (See p. 390.)
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Let f(x) be a function defined in the interval — # < 2 < m,
and such that in this interval | f(x) | is integrable in the Lebesgue
sense;* then the Fourier series for f(x) is summable (Ck) for
any k > 0 with the sum 3(f(x 4+ 0) + fx — 0)) = 1 lin%

(fx 4 €) + fl@ — €) at any point where this limit exists.t
The convergence of the Cesiro means of order k towards this
limit 1is uniform on any closed range for every point of which
f(@) s bounded and f(x + 0) 4+ f(x — 0) extsts uniformly.

2. To prove this theorem, we start from the well known
expression for the sum of the n + 1 first terms of the Fourier
series for f(x).
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on account of the periodicity of f(x), as established in foot-
note *, and this expression is easily transformed into
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and the nth Cesidro mean of order % of the Fourler series in
question becomes, by (4),
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The simplification in the present proof lies in the method of arriving
at the inequality (7), which is obtained by Chapman by a method
equivalent to the application of Euler’s summation formula to the expres-
sion.

The present method is applicable also to the corresponding problem in
the expansion of a function of two variables in a series of spherical har-
monics; see my forthcoming papers in the Mathematische Annalen: ‘“Uber
die Laplace’sche Reihe” and “Uber die Summirbarkeit der Reihen von
Laplace und Legendre.”

* In Chapman’s statement of the theorem, f(x) is only required to be
integrable in the Lebesgue sense without being absolutely integrable (both
requirements being equivalent only when f(z) is bounded for — = = z = «).
In Art. 3 of the present note, it is shown by an example that in this form
the theorem is not generally true.

1 For 2 = ==, this limit should be replaced by ¥ f[(— = 4+ 0) + f(=—0)],
which may be included in the expression above by defining f(x) outside of
the interval — 7 = z = = as periodic with the period 2.
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where
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Making f(x) = 1, we obtain
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We now assume £ < 1;* the main point in our proof con-
sists in showing that
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where ¢, as well as ¢, ¢3, + - - which will be introduced later,
are positive constants independent of n. We decompose our
integral as follows:
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* A series being (uniformly) summable (Ck) is also (uniformly) summable
(CE’) with the same sum when k&’ >k (see Chapman, 1. ¢.), and 1t is therefore
sufficient to prove our theorem for & < 1.
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To estimate the second part of our integral, we observe that,
for | 2] <1,
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the integration being performed in the positive sense over a
contour C enclosing the points 2 = 1 and z = ¢*%, and the
determinations of z* and (z — 1)* being taken so that they
are real and positive for z real and > 1. We now deform the
contour C into a circuit C; consisting of (1) the straight line
fromz = 0toz= 1 — », where 5 > 0; (2) the circlez = 1+ 5¢®,
— 7 £60 L7 and (3) the stralght line from s =1— g to
2= 0, followed by a similar circuit C; around z = ¢ As
0< k < 1, the integral over (2) tends towards zero with #;
on (1) and (3) we have 2*> 0, and as (3 — 1)* > 0 for
=147, we have (3 — 1)* = ¢*"(1 — 2)* on (1), but
(3 — 1)* = ¢*™(1 — 2)* on (3), so that, letting  tend towards
Z€ero,
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We also have
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this being the residue of the integrand at z = ¢*?. Denoting
by M the minimum of | s — ¢ | for 0 < z < 1, so that
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By Stirling’s formula, it is readily seen from (1) that
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and from (10), (11) and (12) we obtain, for 0 < y < /4,
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from which inequality and (8) we immediately deduce (7).
For 0 < € < w/4, we also obtain from (10), (11) and (12)
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In (6), make € so small that, § being a given positive quantity,
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On account of (13), we also have, bearing in mind the absolute
integrability of f(x),
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After fixing an e satisfying (14), we determine an N = N(e)
so large that (16) becomes less than §/2 for n 2N, and (6), (15)
and (16) give

| 8@ (@) — 3f@+ 0) +f@—0) |<s for n 2N,

which proves the first part of the theorem. In regard to the
second part, it is sufficient to observe that, the range in
question being closed, an € and a ¢; may be determined inde-
pendent of x so that (14) and (16) hold uniformly over the
range in question.

3. To show that the theorem is not generally true when
f(@) is integrable without being absolutely integrable, con-
sider the function of period 27 defined by

<

f@) = j—x (a:" cos i) 0Lz < 2m).

Riemann* has shown that, for 0 < » < %, the nth term in
the Fourier series corresponding to this function has the
asymptotic expression

n=w

(2;; sin (2 Vn — nx + %) + e,,) n@=2M lim e, = 0,

* B. Riemann, “Ueber die Darstellbarkeit einer Function durch eine
trigonometrische Reihe,” Gesammelte Werke, second edition (Leipzig,
1892), pp. 227-265. See pp. 260 et seq.
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and, as for the summability (Ck) of the series uo + u; + - -+
-+ %, -+ - it is necessary that*

lim =% = 0,
it follows that, for any & < %, we obtain a Fourier series which
is not summable (Ck) for any value of « by selecting a » such
that 1 — 2» > 4k. By a suitable modification of Riemann’s
example, we may construct a Fourier series with the corre-
sponding property for any k < %; for 1 >k = 3, I have not
been able to decide whether the theorem is true for all in-
tegrable (and not only absolutely integrable) functions or not.

Cricaco, ILL.,
February 3, 1913.

NOTE ON PIERPONT’S THEORY OF FUNCTIONS.

Ix a review, written some years ago, of Pierpont’s Theory of
Functions of Real Variables, I made the following incorrect
statement with regard to the possibility of reversing the order
of differentiation of a function f(z, ¥):{

“Under the assumption that f,’ exists on y = b, f,/ on
x = a, and that one of them is approached uniformly, it
follows as a corollary to the theorem of Moore mentioned
above, that the second derivatives f.,”, f,.” exist at (a, b)
and are equal.”

The assumptions should be that f,’ exists on z = @, f,’ on
y = b, and that the derivative for x at « = a of the quotient
f(x, y)/(y — b) is approached uniformly for values of y different
from b. These are the hypotheses, in different words, which
Professor E. H. Moore uses in the Lectures referred to on
page 124 of the review, and which I intended to reproduce.

I am indebted for this correction to Mr. G. A. Pfeiffer. In
a recent letter to me he cited the example f=2y(2®>—3?)/(2?+3?
with the agreement that f shall be zero for 2 = y = 0, which

*S. Chapman, 1. c., p. 379.

1 For k = 1, the theorem holds for any integrable function; see for the
case k = 1 (the theorem holds a fortiori for £ > 1) L. Fejér, “Unter-

suchungen iiber trigonometrische Reihen,” Math. Annalen, vol. 58 (1904),

pp. 51-69.
} BuLLETIN, vol. 13 (1906), page 125.




