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We shall note a few additional properties of the function 
we have obtained. 

In addition to being single valued, F(x) assumes a given 
value but once. We can thus regard it as giving a one-to-one 
transformation of the interval (0, 1) into itself, which is 
everywhere discontinuous. At every point save x = i the 
function has no limit; that is, every point, except x = §, is a 
point of discontinuity of the second kind. It is also apparent 
that both the greatest and least values approached at a point 
are continuous functions. 

INDIANA UNIVEBSITY, 
May, 1914. 

PROOF OF THE CONVERGENCE OF POISSON'S 
INTEGRAL FOR NON-ABSOLUTELY 

INTEGRABLE FUNCTIONS. 

BY DR. W. W. KÜSTERMANN. 

IN the following pages I propose to give a proof of the 
THEOEEM: If f(x) is a real, periodic function, of period 2w, 

which in the interval (0, 2ir) has a proper or improper integral 
in the sense of Lebesgue, Harnack-Riemann, or Harnack-
Lebesgue-Hobson,* then 

1 r " 1 — r2 

lim -pr I f M z—;—Ö Ö -, r da 
r->i2Trj„n

JK J 1 + r2 — 2rcos (a — x) 
= lim M/(* + 0+ƒ(*-*)] 

at every point x where the limit on the right hand side exists. 
This theorem! includes in particular the case where f(x) 

remains finite—disposed of by Schwarz,f and the case where 
f{x) becomes infinite at an infinite number of points, but has 
an absolutely convergent improper integral—discussed by 
Hobson and others.^ Moreover, it goes farther, in that it 

* For these definitions see Hobson, Theory of Functions of a Real 
Variable, Cambridge, 1907. 

t Schwarz, Math. Abhd., vol. 2, pp. 144 and 175. 
% Most completely by Hobson, Theory of Functions of a Real Variable, 

p. 719; cf. also Bôcher, Ann. of Math.x 2d ser., vol. 7, p. 81; Fatou, 
Acta Math., vol. 30, p. 335; Picard, Traité d'Analyse, 2d éd., vol. 1, p. 
268; Forsyth, Theory of Functions*., 2d éd., p. 450. 
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also covers the case where f(x) becomes infinite in such a way 
as to be not absolutely integrable in the vicinity of a point, or, 
for that matter, of a non-dense, closed set of points of content 
zero. All former proofs, as far as I know, fail to cover this 
case, since they require at some place or other that \ff{a)da\ 
be replaced by f\ f(a)da .* The subsequent proof rests upon 
an application of the second mean value theorem, established 
by Hobsonf in its most general form. For the present purpose 
Hobson's results may be stated as follows: 

"If <p(x) be a limited and monotonically decreasing positive 
function of the real variable x, and if ƒ(x) have an improper 
integral in (a, b), either absolutely or non-absolutely con
vergent in accordance with the definitions of Lebesgue, 
Harnack-Riemann, or Harnack-Lebesgue-Hobson, then 

(I) <p(x)f(x) has also an improper integral in (a, b) in accord
ance with the same definition; 

' <p(x)f(x)dx = A I f(x)dx, where A is any number 
a *J a 

such that A ^ <p(a + 0) and X is a number in the interval 
(a, &)." 
Now consider 

_ 1 - r2 

<*(a) " l + r2-2rcosa' 

where 0 < r < 1 in the interval 0 ^ a ^ T. The cos a 
decreases monotonically from + 1 to — 1. The expression 
1 + r2 — 2r cos ce, however, increases from (1 — r)2 to (1 + r)2 

and remains always greater than zero. It follows that, for 
each 0 < r < 1, <pr(a) is a positive, monotonically decreasing 
function and satisfies the premises of the mean value theorem. 
If then f(x) does likewise, we may conclude from (I) that 
Poisson's integral 

1 Cn 1 — r2 

P(x, r) = 7T- I f (a) 1—r—i s T r da 
v J 2w J_w

 J v ' 1 + r2 — 2r cos (a — x) 

* Thus the presence of just one singularity such as — has at a = 0 

would question the existence of Poisson's integral and its limit for any 
point x whatever. 

t Hobson, Proc. Lond. Math. Soc, 2d ser., vol. 7 (1909), p. 14. 
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1 fw 1 — r2 

2T J„„ V ' 1 + r — 2r cos a 

1 f* 
= 2^ J ƒ(* + a)<pr(a)da 

exists and has meaning. Now 

c a -r2)cfo r i + r . « i 
I T~l—2 ö = arctan q tan ~ , 

J 1 + r — 2r cos a L1 — * 2 J 
hence 

I <pr(a)da = 27T, 

independent of r. Let 

(1) lmJ|/(s + 0+ƒ(*-<)] = i , 
then 

2TT{P(Z, r ) - L } = f * [f(x + a)- L]<pr(a)da 
U — 1T 

9 r [ƒ(* + <*)+ƒ(*-<*) r i , w 
= 2 Jo I 2 L <Pr(pQda, 

since £v(a) = <pr(— a), 

— i <pr(a)da. 

An arbitrarily small e > 0 having been prescribed, lee S be 
chosen in such a way that 

ƒ(s + op + ƒ(x — op _ 
< €, for 0 < a < 8. 

That this is always possible follows from (1). Moreover, 
<Pr(a) being positive, | (pr(a) | = <pr(oö* Hence, applying the 

second mean value theorem (II) to I , we have 
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7T | P(x, r) — L ^ € I <pr(a)da 

+*Hn /(*+a)t /(*~a)- i]4 
where S ^ Xr 5* x, 

< «r + *v(S)<?,* 
for 0 < r < 1, 

(1 - Q g 
siir f o 

where C? and K are positive constants, 

< e ' , 

for r close enough to unity. Hence lim P(x, r) = L. 

W. W. KÜSTERMANN. 
ANN ARBOR, 

May 2, 1914. 

THE NAPIER TERCENTENARY CELEBRATION. 

THE Napier Tercentenary Celebration was held at Edinburgh 
on July 24-28, 1914, with over three hundred visitors present. 
The ceremonies opened at the University of Edinburgh under 
the presidency of the Lord Provost of the city, the address of 
the day being delivered by Lord Moulton and relating to the 
probable reasons in Napier's mind for deciding upon a table 
of logarithms of sines and to his probable methods of com
puting. Brief addresses were given by four of the official 
delegates, Professors Andoyer and D'Ocagne of Paris, Smith 
of New York, and Bauschinger of Strassburg. 

On Saturday morning the first session was held under the 
presidency of Professor Hobson of Cambridge. The following 
papers were presented: 

DR. J. W. L. GLAISHER, of Cambridge: "The work of 
Napier." 

Dr. Glaisher called attention to the paucity of notations 
* The argument here is based on the fact that a definite integral is a 

continuous function of its upper limit and as such has a finite maximum 
and minimum. Cf. E. H. Moore, Transactions, vol. 2, pp. 296 and 459. 


