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IN his "Child's Garden of Verses" Robert Louis Stevenson 
says simply but poetically: 

" The world is so full of a number of things, 
I'm sure we should all be as happy as kings.'f 

This catches the spirit of the Mengenlehre, and may well be 
taken as its motto. In more homely phrase the mathematician 
and physicist declare that the world is made up of an infinite 
number of things. Hence in thought and nature we have to 
consider numbers which are infinite. Even though they be 
not actually infinite, they are so enormously, unthinkably 
large that they can be most advantageously handled by 
regarding them as infinite. Such a mode of treatment was, 
of course, foreign to Greek thought. But, as you all know, 
the classic Greek mathematics was straitened by its failure 
to admit the infinitesimally small and the infinitely great 
magnitudes of the calculus. In somewhat similar fashion 
modern mathematics was long hampered by the lack of a 
mathematical theory, not of the potentially infinite quantity 
of the calculus, but of actually infinite aggregates. It was the 
incalculable and distinctive service of Georg Cantor to have 
perceived the urgent need of such a theory, Minerva-like 
and full panoplied it sprang from his teeming brain. Already 
its achievements have been very great, but it is far from 
maturity and its full powers are still to be revealed. 

The influence of this new theory of infinite aggregates was 
first decisively felt in the theory of functions of the real and 
complex variables, where infinite sets of points, often irregular 
in character, frequently present themselves; for example, the 
discontinuities of an integrable function or the singularities 
of an analytic function, either of which may occur in infinite 
number. Here also, in the function-theory, its richest fruition 
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has been attained. Three stages in the history of the Mengen-
lehre have been distinguished by Borel.* At first an offshoot 
or branch of the function theory, it soon reached a stage of 
independent existence where it was studied by and for itself. 
But its methods and ideas so rapidly permeated the function-
theory that a third period is distinguished by Borel, in which 
its essentials have been re-absorbed into the function-theory. 
The time would appear to be opportune for a general view of 
their mutual interaction, but inasmuch as this is so well-known 
in many of its aspects,! I have preferred to consider other 
bearings of Cantor's theory. 

Quite in contrast with the definitive effects in the function-
theories is the plastic and vitalizing action of the Mengenlehre 
upon logic and philosophy. This may well be considered as 
beginning a fourth period, formally inaugurated at Paris 
last April in the first international congress for mathematical 
philosophy. Considered abstractly, Cantor's theory led in
evitably to questions regarding the modes and soundness of 
reasoning upon infinite aggregates. Certain well-known anti
nomies resulted, demanding imperatively a solution. This 
has been generally sought by abandoning Cantor's definition 
of a set$ as any collection of definite and well-separated 
objects of perception or thought. For how otherwise can we 
make sure, as we certainly must, that there is no contradiction 
lurking in the set of objects brought together? By what, 
then, shall Cantor's definition be replaced? Must we confine 
ourselves to sets of objects each of which has been clearly 
defined in a finite number of words? The child begins to 
think on the world around him, undeterred by the considera
tion that the number of objects is limitless while he can reason 
in only a finite number of words. Numberless errors are made 
by him, the discovery and correction of which enhance his 
knowledge and power. Likewise in the early renaissance 
Cavalieri, Kepler, and others argued most imperfectly on 
indivisibles and infinites. But out of their thinking sprang 
ultimately the most powerful branch of mathematics. Un
doubtedly great dangers lie hidden in reasoning on infinite 
classes of distinct objects whose elements have not all been 

* Cf. Revue générale des Sciences, vol. 20 (1909), p. 315. 
t Various aspects are well presented by Borel; loc. cit. 
t " Unter einer Menge verstehen wir jede Zusammenfassung von be-

stimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres 
Denkens zu einem Ganzen." Math. Ann., vol. 46 (1895), p. 481. 
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defined and separated from one another by a finite number of 
words—for example, the points of a continuum. Principles 
may be used which subsequently will be discovered to be 
false, or at least more restrictedly true than had been 
imagined. But is this a sufficient cause for abandoning the 
so-called idealistic reasoning? Is it not rather a true mode 
of discovery? By boldly plunging forward in idealistic reason
ing shall we not avoid the danger of falling into sterile rules 
of thought? Or, to the contrary, shall we thereby merely 
stumble into the pit we are trying to avoid? Is the Princip 
der Auswahl sound, or mere sound? Does mathematical 
reasoning involve principles which cannot be embraced in 
the syllogism, as claimed by Poincaré and denied by Russell; 
for instance, the principle of mathematical induction? Such 
questions as these, and many others, are merely an indication 
of the fermentation started by the Mengenlehre which has 
resulted in the re-creation of a department of mathematical 
logic and philosophy. 

Into the consideration of this new and potent, but most 
abstract influence of the theory of aggregates I also do not 
propose to enter. My interest today lies neither in its best 
nor least formulated influence. I t was the expectation of 
both Cantor and du Bois-Reymond that the theory of point-
sets would become very useful in the field of mathematical 
physics. This expectation has been so little realized that 
even to the present time it is commonly said that no applica
tions are there to be found. Though, indeed, as yet the 
applications to astronomy and physics are but few, they seem 
to me óf great significance and promise. In fact, dynamics 
must always be deeply dependent for its development upon 
geometry, since dynamical trajectories are special cases of 
geometric curves. I t seems to me, therefore, fitting to 
consider simultaneously: The service of the point-set theory 
to geometry and dynamics. 

The rôle of any great branch of mathematics may be due 
to one or more of three causes,—its fundamental concepts, 
its distinctive methods, or its principal results. In the case of 
the point-set theory the rôle has been determined chiefly by 
its concepts and methods, which are intimately related. The 
greatness of a mathematical method or concept—for example, 
the notion of a group or of a differential coefficient—may be 
tested by its simplicity and universality. As has been so 
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often said, the human intellect demands economy and con
venience of thought. The scientist selects such principles as 
fulfil this demand and calls them true and fundamental. Not 
less imperative is it in mathematics to search for those con
cepts, methods, and theorems which are simple and widely 
applicable. This, let me urge parenthetically, is a lesson 
we may well ponder if our ambition for the greatness of 
American mathematics is to be attained. Judged by the same 
standard, the point-set theory is strong in both its methods 
and concepts, but preeminently in the latter. 

To Georg Cantor was granted the rare fortune and merit 
to have uncovered more than one great concept. Some of 
his notions, as for instance the "power" of a set and the trans-
finite ordinal number of the first class, have as yet found their 
application almost wholly within the function-theory, and 
these I shall have no occasion to introduce. The concepts 
which I shall need are only five in number. Two of these are 
the familiar notions "limit point" and "everywhere dense," 
which antedate the work of Cantor. It was Cantor, however, 
who focused the search light upon the totality of the limit 
points of a given set, and called this totality the "derivative" 
or "first derived set" of the given set. The fourth concept is 
that of a "perfect set," which results when a set coincides 
with its derivative, so that it contains all its limit points and 
nothing but these. The fifth and last notion is perhaps 
Cantor's greatest concept, that of a "countable" or "enumer
able" set, with which every one is familiar,* In particular, 
he showed the set of algebraic numbers to be countable. 

On this concept of countability is based the modern analysis 
of the continuous interval, which lies at the bottom of ordinary 
geometry, be it euclidean or non-euclidean, two-dimensional 
or n-dimensional. Every well-informed mathematician knows 
how at last a satisfactory foundation for a continuous number 
system was discovered by Dedekind. His memoir of 1872 
in which this was published is contemporary with Cantor's 
earliest publications relating to the Mengenlehre and may 
worthily be regarded with Cantor's work as the chief 
spring of our point-set theory. Starting with the system 
of rational numbers arranged in natural order of magni-

* A set is said to be countable when by proper selection we can count 
its elements, " one, two, three," etc., ad infinitum, omitting no element and 
reaching each element at some time in our count. 
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tude, Dedekind considered the cuts through the system 
which divide it into two parts, lying to the right and left of 
the cut respectively. Wherever there was a "gap" caused by 
the cut—i. e., neither a last element before the cut nor a first 
element after the cut—he filled in the gap with an irrational 
number. A definite type of order (the "order-type" 0) is 
thus obtained for the continuous number system created. 
In accordance with this analysis a continuous interval becomes 
merely an ordered aggregate of separate points, non-countable 
in number because the gaps in the system of rational points 
in their natural order were shown by Cantor to be non-
countable. Hence the mathematical continuum or matrix— 
and, if you so will, the physical ether to correspond—is 
resolved into separate but ordered constituents with a reality 
and discreteness comparable to that of a row of marbles 
extending infinitely far to right and left. 

It is worthy of remark that this "arithmetization" of the 
continuous interval is in everyway parallel to the recent 
progress of physics, which tends more and more to become a 
theory of discrete molecules, atoms, and electrons. Even the 
existence of the matrix or ether in which these are imbedded 
has become problematical and open to suspicion. To the 
atomic structure of a continuous region, if I may call it that, 
the mathematician also has been driven by the necessity for 
clear thinking. The question whether anything can be 
gained for physical theory by supposing our continuous space 
or ether to be characterized by a higher and more complex 
order-type has, so far as I know, not been even broached. 
Within our present continuous space the point-set theory 
enables us increasingly to consider different groupings of 
points. In his Houston Lectures Borel has remarked how 
different physical theories require and engender different 
mathematical theories. Thus the differential calculus tallies 
with a physical theory of continuous matter. It seems by no 
means a wild fancy that because of its essentially atomic 
structure the point-set theory may develop into an indispen
sable tool of an atomic physics. 

The analysis of the continuum is closely connected with 
one of the characteristics of modern geometrical development, 
the search for an axiomatic basis. While too much should 
certainly not be claimed for the point-set theory in this regard, 
it is probably not too much to say that it has given, in a 
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general rather than a specific way, a strong impulse to this 
search, though, of course, one entirely secondary to the 
impulse imparted by the non-euclidean geometry. Yet even 
more than the latter, it involves a most careful critique of 
geometrical relations. Historically considered, it is difficult 
to believe that Hilbert's Foundations of Geometry could 
have been written before a considerable development of 
point-set theory. Be this as it may, the rôle of the theory 
becomes clear and explicit in one of Hubert's later communica
tions* on the Foundations of Geometry which lays the 
foundation for geometrical motion. 

In this memoir Hubert achieved the solution of a problem 
of non-euclidean geometry proposed long before by Riemann, 
who (with Helmholtz) was the first to attack this subject 
upon the analytical side. Taking space as the "Zahlen-
mannigf altigkeit " of analytical geometry, Riemann asked 
what properties must be imposed upon this number-spread to 
give it the character of an ordinary geometry, though not 
necessarily a euclidean one. His fundamental concept and 
tool was the element of arc, to which his axioms relate. But 
to build a finite geometry upon the element of arc, integration 
is necessary.f Now neither the notion of integration nor of 
an element of arc is fundamentally simple. Hence his solution, 
as also for other reasons, cannot be regarded as satisfactory. 
Later the problem was attacked by Lie, whose attention had 
been called by Klein to the fact that the notion of a continuous 
group was involved in both Riemann's and Helmholtz's work 
on non-éuclidean geometry. Lie's axiomatic handling of the 
problem by the use of the continuous group is also very far 
from elementary^ since in defining the group he employs only 
transformations which are represented by differentiable func
tions. Also for the same reason his results are restricted in 
generality. 

Such was the condition of the problem when it was attacked 
in 1902 by Hubert. His communication is in his best style 
and has the elegance always characteristic of his geometrical 
work. He lays down just three axioms of motion, which I 
shall not stop to explain but which may be expressed tersely 
but vaguely as follows : 

1. The movements of the plane into itself form a group. 
* Math. Ann., vol. 56 (1902), p. 381. 
t Cf. Lie-Engel, Theorie der Transformationsgruppen, vol. 3, p. 395. 
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2. Every ("wahre") circle contains infinitely many points. 
3. The movements form a closed system. 
A geometry based on these axioms is then proved to possess 

the character of either the euclidean geometry or the hyper
bolic geometry of Bolyai and Lobachevsky. In the proof 
Hubert sloughs off entirely such unnecessary elements as 
differentiability and even the employment of functions. 

The memoir is a splendid interweaving of the basal con
cepts of two great subjects, the group and point-set theories. 
From almost the first line to the last it is saturated with the 
notions and methods of the point-set theory. I know of no 
more beautiful application of the theory to be found anywhere. 
I have chosen it therefore as a peg on which to hang some of 
my remarks. 

First of all, I wish you to notice that the point-set theory 
must enter indispensably into problems like this, which deal 
with the foundations of geometry and seek the most general 
conditions under which our space theorems and assumptions 
are to hold. For when the axiomatization of geometry 
passes beyond its simpler stages, we must begin to consider 
infinite aggregates of points, duly grouped and arranged. 
Hence point-set theory implicitly or explicitly begins to enter. 
We have not merely to decompose a theorem or assumption 
into simpler fundamental elements and relationships, but in 
the synthesis which follows we have also to combine into sets 
all points or curves which fulfil certain conditions. Thus 
when Hubert considers all possible motions of a plane into 
itself which leave a particular point unaltered, he must show 
that the different positions taken by any other point form a 
set of points infinitely dense in themselves and closed, in 
other words, a perfect set; that this perfect set has the order 
type of the linear continuum, consisting of an ordered count
able set of points dense in itself and their limit points; that 
this linearly ordered set is a closed Jordan curve containing 
in its interior the fixed point of the motion; that these Jordan 
curves of motion enclose one another like the set of concentric 
circles; and so on. In this manner he demonstrates that in 
any motion of the plane which leaves a fixed point invariant, 
the path described by any point possesses all the essential 
characteristics of a circle viewed in the light of analysis situs. 

Furthermore, Hilbert's problem is typical of an ever 
increasing number of problems in which we have to settle the 
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exact geometrical character of a set of points, the locus being 
often constructed point by point through some analytic process 
with a final combination of them into a whole. Frequently 
the condensation method is applied, of which I shall speak 
later. The problems may differ widely in character, ranging 
from the consideration of such abstract loci as Hubert here 
obtains to the determination of the nature of a dynamical 
trajectory or of the set of singularities of an analytic function. 

A third aspect of Hubert's work which I wish to emphasize 
is that it belongs to the province of analysis situs. The plane 
with which he is dealing is defined as a system of points or 
"Dingen" which can be referred by a one-one correspondence 
to the finite number plane or a portion (Teilsystem) of the 
same. Some of you have doubtless been already asking what 
is to be understood by the term "movement of a plane" into 
itself which I have been using. By Hubert's definition this is 
any continuous 1-1 transformation of the number image of 
the plane into itself which leaves unaltered the sense of a 
circuit around any Jordan curve of this image-plane. Hence 
by very definition the problem is one of analysis situs. The 
increasing importance of this branch of mathematics need 
scarcely be argued here. Ever since Biemann revealed the 
importance of the "genus" or "class" for a Riemann surface 
and for the corresponding functions, the qualitative distinc
tions of analysis situs have proved to be fundamental for the 
detection of differences in analytic or geometric theories and 
for their differentiation one from another. Now it is this 
province of mathematics which is today being invaded by the 
two allies, the function-theory and the theory of point-sets, 
and so successfully has it been invaded that its independence 
has been almost lost.* It remains only to determine which 
of the two allies will annex it or how they will divide the spoils. 
In his report at the Zurich International Congress (1897) on 
the "Development of the general theory of analytic func
tions in recent time" Hurwitz stated "die Aufgabe der 
Analysis Situs" to be this, "die Invarianten der einzelnen 
Klassen von Punktmengen auszusuchen." I wish to preserve 
my neutrality, but I venture nevertheless to interpret this as 
an early prediction of the annexation of analysis situs by 
the theory of point-sets. As examples of invariants of analysis 

* However, one large division of the subject has been scarcely affected 
by the methods or ideas of point-set theory. 
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situs which are unaltered by any continuous 1-1 point trans
formation, I may cite such concepts as limit-point, a perfect 
point-set, the power of a point-set, and the accessibility or 
inaccessibility of a specified point of the boundary of a region 
by means of a path from any interior point which, save for 
its terminal boundary point, lies wholly in the interior of the 
region. Examples of invariantive properties are expressed 
in the familiar theorem that a Jordan curve divides the plane 
into two regions, also the theorem of Brouwer that the number 
of dimensions of a space is unaltered by a continuous 1-1 
transformation; and so on. 

The enrichment of geometry by the theory of point-sets is 
by no means confined to the department of analysis situs. 
The new theory has shown itself strong—I might almost say 
unexpectedly strong—on the quantitative as well as on the 
qualitative side. As early as 1882 an effort was made by 
Hankel to attribute content to a discrete set of points. This 
concept contributed a new element to the growth of the theory. 
In the more comprehensive form of "measure" devised by 
Borel and Lebesgue it becomes a powerful agent for quantita
tive discrimination between sets of points. Thus the rational 
points in an interval are given a measure 0 and in consequence 
become negligible in comparison with the irrational points, 
whose total measure is equal to the length of the interval. 
With this keen-cutting instrument, measure, Lebesgue has 
sharpened Riemann's definition of an integral or, more 
exactly stated, has fashioned a new integral to take its place, 
far more comprehensive and for theoretical purposes much 
more powerful. It is true that the new integral has been 
little applied as yet in geometry, but its usefulness in analysis 
leaves little doubt that it must eventually become important in 
geometry also. Such intuitive ideas as the length of a curve or 
the area of a surface involve much difficulty as soon as we leave 
the simpler cases, and require the use of measure or other 
point-set analysis for their development. By point-set means 
various species of curves have been distinguished, such as Jor
dan curves, rectifiable and non-rectifiable curves, space-filling 
curves, the Lebesgue-Osgood curves with areal content, and so 
on. I may also mention Lebesgue's developable surfaces which 
are not applicable to a plane, and applicable surfaces which are 
non-developable. These specifications will suffice to indicate 
the enrichment of geometry through new ideas. A large num-



330 THE HOLE OF THE POINT-SET THEORY. [April , 

ber of the familiar geometrical concepts, such as the instan
taneous curvature of a curve or a surface, were brought in 
through the differential calculus and begot a differential 
geometry. Is it too much to expect that new ideas of a 
totally different import will cause the creation of a corre
sponding geometry? 

Taken as a whole, the point-set theory is conspicuously 
and characteristically free from formulas. I t strikes beneath 
the formula, which usually limits by its concreteness and 
definiteness. This absence of equations and formulas is an 
indication both of strength and of weakness. The sword cuts 
both ways. The point-set theory becomes less useful as the 
problem becomes more restricted and regular, in particular 
when the domain is a continuum and the problem falls under 
the differential calculus in which the functions are so highly 
civilized as to be both continuous and differentiable. At 
first thought there might be some surprise at the almost 
complete absence of point-set considerations in the differential 
geometry. I was'much interested to find that one of my 
well-informed colleagues had thought of point-set theory as a 
tool especially adapted for use "im Kleinen"—to use a sig
nificant term of Osgood. To me, on the other hand, it had 
appealed because of its power "im Grossen/' In its essential 
nature it seems to me more allied to integration than to dif
ferentiation. I t is, of course, true that such concepts as limit 
point or point of condensation in the Lindelof sense* apply 
not merely im Kleinen but im infinitesimalen Kleinen; that 
is to say, when the region or interval containing the point must 
be indefinitely contracted. The most characteristic point-set 
methods also involve an analysis im Kleinen. On the other 
hand, the greatest concepts of the theory, such as count-
ability, derived set, perfect set, are concepts im Grossen. 
Thus while in the two latter we consider the limit points of the 
set, our attention is turned to the totality of such points. 
Similarly, the most common point-set method is one by 
which a property im Kleinen is first established over a dense 
sub-set of points and then extended to all points of the set. 
I doubt not that much of the characteristic strength of the 
point-set theory lies precisely in this union of consideration 
im Kleinen and im Grossen. But the latter is the dominant 
factor conspicuously evinced in the applications. We are, 

* A point in whose vicinity there is an uncountable number of points of 
the set. 
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in fact, no longer content with study im Kleinen and to see 
in part. Modern mathematics demands, and demands with 
increasing insistence, methods which give control over the 
whole of the object under consideration, whether it be function 
or geometrical figure. The point-set theory complies with 
this demand. We have passed through a differential period 
in the development of mathematics. To what extent this 
will be succeeded by a point-set period it remains for the 
future to disclose. 

I have said that the theory has had little or no application 
in the differential geometry of curves and surfaces. I must 
not, however, omit to mention one great application to geo
desies upon surfaces of negative curvature made by Hadamard 
in a memoir* wonderful for the extensive qualitative results 
obtained with most sparing use of formulas. His attention is 
not confined in the usual manner to a single geodesic curve but 
he considers these curves in theirtotahty. As in Poincaré's work 
on differential equations, so here success is obtained because 
he dares the whole. The surface of negative curvature may 
have any number of nappes stretching out to infinity, and 
may be pierced, somewhat like an anchor ring, with any 
number of holes. Four kinds of geodesies are distinguished: 
(1) closed geodesies and (2) those which are asymptotic to 
these, (3) geodesies which lie in finite space but are neither 
closed nor asymptotic to closed geodesies, and (4) geodesies 
which run off to infinity. If the connection of the surface 
is greater than 2, there is a countably infinite number of 
closed geodesies, and they form a set "condensed in itself," 
to apply a term of Hadamard which is not quite self-explana-
tory.f But the most interesting result relates to the set of 
geodesies which pass through any point of what is termed the 
" finite part " of the surface. The directions of those geodesies 
through the point which do not go to infinity form a perfect 
set of directions nowhere dense, the interior of the intervening 
sectors being filled with geodesies which run to infinity. 
Thus the notion of a perfect set nowhere dense has here its 
analogue in the set of directions at a point which belong 
to geodesies of the first three species.J 

* Liouville's Journalj ser. 5, vol. 4 (1898), p. 27. 
t The exact meaning is explained on p. 55 of his memoir. 
% Point-set considerations of other character enter into the investiga

tions of geodesies upon closed polyedral surfaces by Stâckel and Rodenberg; 
Rendiconti del Circolo matematico di Palermo, vol. 22 (1906), p. 141, and 
vol. 23, pp. 107, 111. 
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This work of Hadamard is the last specific example which 
I shall cite of the influence of point-set concepts upon geo
metrical theory, and in some ways it is the most remarkable 
one because the notion of a perfect set nowhere dense is not 
only carried over without modification from a set of points to 
a set of curves but is actually and unexpectedly realized, 
not through some artificially constructed example but in 
practical study. The example emphasizes the importance of 
the extension of point-set theory to sets of curves. For this 
a further development is necessary. Fréchet has done pioneer 
work in laying foundations for a theory of infinite sets of 
objects other than points, and I may also refer to the investi
gations of Arzelà, Moore, and others. The incipient geometry 
of infinitely many variables is also closely related and seems 
destined to have a very considerable importance. But what 
seems particularly desirable is concrete application and con
crete study of sets of curves because of the broad field of 
application in geometry and dynamics. In this connection I 
should not forget to refer to Volterra's work on differentia
tion with respect to a curve, which involves point-set con
siderations to a much greater degree than does the ordinary 
differential calculus. But while reference to it here as an 
outcome of point-set theory should not be omitted, I regard it, 
more strictly considered, as forming a distinct branch of 
mathematics, lying like the differential calculus, just without 
or within the point-set theory according to one's point of view. 

The service of the point-set theory to geometry has not 
by any means consisted solely in its fertilization of geometry 
through new ideas, but almost equally in its introduction of new 
methods. Time altogether fails me to enter adequately into 
this aspect of the subject, and it is less necessary because the 
methods have been in some slight degree implied in preceding 
considerations and are involved still more in those which 
follow. I should like, however, to note incidentally that the 
nature of a point-set entering into a problem often prescribes 
the method to be employed. I shall content myself with a 
single explicit example of one of the most typical methods, 
which I have already termed the condensation method. This 
is taken from Hilbert's* proof of the existence of geodesies 
upon surfaces of analytical character. 

* Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 8 (1899), 
p. 185. Cf. also Noble's Dissertation, Göttingen, 1901. 
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The length of a geodesic line upon the surface is presented 
under the form of an integral between the two given but 
arbitrary points A and B and is to be minimized by proper 
choice of the surface curve between the two points. The 
problem is therefore also one of the calculus of variations. 
The crucial point is to demonstrate, under the conditions given, 
the actual realization of the lower limit of this integral by 
some curve on the surface between the two points. To 
establish this Hubert selects a sequence of curves between 
A and B whose lengths approach indefinitely this lower limit. 
On each of these curves the middle point is taken. A limit 
point of these middle points gives then a first point Py2 of the 
desired geodesic. The curves between A and Py2 and between 
Py2 and B are then considered in exactly the same way, and 
two new limit points P% and P% are obtained which are points 
of the final geodesic. By continuing in this manner an 
ordered, dense, and countable set of points Pnj2m is obtained 
whose derived set is shown to be a curve between A and B, 
the length of which is equal to the lower limit of the lengths of 
all possible curves on the surface between the two points. 
It is therefore the required minimum line or geodesic. By the 
same general method the fundamental and well-known 
existence theorem of Hilbert in the calculus of variations has 
been established.* These are but samples of geometrical 
problems in which the condensation method would appear 
to be almost the only resort. The method is easy and strong 
because it grips the problem beneath the formula close to 
the roots and seems especially adapted to the calculus of 
variations, in which the point-set theory has already played 
a considerable part. 

From the calculus of variations and the study of geodesies 
it is not far to the applications in dynamics. Geodesies are 
indeed a special case of dynamical trajectories. In these 
applications the methods of point-set theory have, I think, 
exerted a greater influence than its concepts, but it is not 
always possible to separate them. The first noteworthy 
dynamical application of which I am aware was made by 

* Hilbert illustrated " the gist of his method by the example of the short
est line upon a surface," and a further development of the method was given 
by Noble (loc. cit.) and by Hilbert in his lectures. Important extensions 
are due to Bolza, Lebesgue, and Carathéodory. For a general resume see 
Bolza's Lectures on the Calculus of Variations, p. 245 ff.; also Carathéodory, 
Math. Ann., vol. 62 (1906), p. 493* 
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Poincaré in his study of dynamical stability.* The motion of 
a particle or system was said by him to be stable à la Poisson 
when it returns an infinity of times within any prescribed dis
tance of its initial position, however small. This is the case 
if the motion is periodic but can also be true when the motion 
is not closed and the system never returns exactly to the 
initial position. In celestial mechanics, the motion or trans
formation of space is often one which preserves volumes, 
thus resembling the motion of an incompressible fluid in 
hydrodynamics. This is presupposed by Poincaré. If the 
motion is continuous, we may obtain a discrete transformation 
by considering the change which takes place in some fixed 
but arbitrary time interval T. Suppose now the volume 
to be limited and consider the result of applying the trans
formation repeatedly to any initial part Uo of the volume. 
Since the transformation by hypothesis preserves volume 
and the total volume is limited, the iteration of the trans
formation must bring this part into some position overlapping 
its original position £70. Suppose this to occur after a\ 
iterations, i. e., at the time a\ T. Let C70

(1) be the part common 
to the two overlapping volumes and apply the transformation 
in similar manner to this part. By the same argument it 
must come to overlap itself, say after a time interval a2T. 
Let C7o(2) be the common part, and apply the transformation 
again to this part. Continuing in this manner, we obtain a 
sequence of volumes C70

(w) (n = 0, 1, 2, • • •)> contained each 
in the preceding. Now by the well-known theorem of point-
sets which is the basis of the familiar method of the "Ein-
schachtelung der Intervalle oder Bereiche," there must be at 
least one point common to a sequence of closed sets contained 
each in the preceding. If the successive pieces Z7o(n) do not 
grow indefinitely small with increasing n, we may confine our 
attention at each successive stage of the reasoning to as small 
a portion of the overlapping volume as we please and thus 
obtain a series of volumes contracting to a single limiting 
point. Take this common point, and beginning de novo, 
apply to it the inverse transformation, thereby reversing the 
direction of motion of the point along its path. Since the 
point lies in U^n+m), it is easy to see by the reversal of the 
preceding considerations that it must lie in U^n) after the 
lapse of any time interval of the form 

* Les Méthodes nouvelles de la Mécanique céleste, vol. 3, chaps. 26 and 
27; in particular, sec. 291-6. 
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- T[an+m + + • • • + e2an+2 + ei^n+i], 

where each ei, e^ •••, 0^-1 is either 0 or 1. As £7o(n) may 
be taken as small as we wish by choosing a sufficiently large 
n, it follows therefore that the point returns an infinity of 
times to the vicinity of its initial position, and hence its 
motion is stable à la Poisson.* Hence in any volume there 
is one, and consequently an infinite number of points whose 
motion is stable in the inverse transformation; also for like 
reason an infinite number in the direct transformation (or in 
both). 

The question next arises whether these points of stable 
motion should be considered as the rule or the exception. 
Poincaré therefore goes on to prove that the probability of 
unstable motion for a particle is infinitely small. The term 
probability, of course, requires definition. It suffices here to 
say that the probability that a molecule taken at random in 
volume V will lie at a given instant in a given portion U of 
that volume is TJjV. In terms of Lebesgue's measure Poin-
caré's conclusion can be reformulated as follows: The set of 
points whose trajectories are not stable has a measure 0, 
and accordingly the probability that a point will not return 
infinitely often to the vicinity of the initial position is 0. 

This conclusion can be extended from particles to systems 
with n degrees of freedom, provided that in the corresponding 
n-dimensional parameter-space there is a volume or other 
invariant integral with positive integrand. Upon this result 
as a foundation rest other theorems of Poincaré which lie 
without my subject. Thus, though point-set considerations 
have entered but little into his work on celestial mechanics, 
they serve to establish a most pivotal result. Their intro
duction was, I believe, inevitable and necessitated by the 
very nature of the conclusion. But before discussing this, 
I wish to place beside Poincaré's result another illustration 
taken also from celestial mechanics. 

One of the fundamental problems of secular variations is 
that of the existence of a so-called "mean motion" for the 
perihelion or node. Much has been writen upon the subject 
since the time of Lagrange, but as it now turns out, prac-

* Poincaré fails to contract the regions Z70
(w) and therefore does not 

strictly prove the stability. " Plus exactement," he states, " il y aura des 
molécules qui traverseront une infinité de fois ce volume." 
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tically all subsequent deductions have been erroneous. 
Mathematically, the problem is as follows: Given two real 
series 

n sin (git + h) + r2 sin (g2t + h2) + h rn sin (gnt + hn), 

n cos (git + h) + r2 cos (g2t+h)+ h rn cos (gnt + hn), 

or the equivalent complex series, 
n 

Iv i (^+ L ) (rn > 0); 
m—l 

to determine when it is possible to express their sums in the 
form r sin co, r cos co, and rei(° respectively, in which the angle œ 
is expressible under the form et + X(t) where c is a constant 
and X(t) is a limited function of t. Lagrange gave two suffi
cient conditions for this,* and remarked that "outside of 
these two cases it was very difficult and perhaps impossible 
to pronounce in general on the nature of the angle." Recently 
the problem has been completely treated for n = 3 by Bohl,f 
who shows that when the condition of Lagrange fails to hold, 
the determination depends upon two quantities, 

p = ~ and f = ~ (o?3 + po>2), 
#3 — gi TT 

in which coi, o?2, uz denote the angles of a triangle with sides 
Ti, r2, r3. Now from Lagrange's work it was known that the 
mean motion exists when p is rational. Bohl shows further 
that for every pair of values (p, £*), the ratio co[t has for 
t = + oo a limit c, but that, on the other hand, there is a 
set of values everywhere dense in the region | p | < l , | f | < l , 
for which the remainder X(t) is not limited and for which 
accordingly there is no mean motion. Since also the points 
(p> f) with commensurable p are everywhere dense, Bohl con
cludes that it will be impossible ever to ascertain by experi
mental data whether or not the mean motion exists. So far 
as I have noticed, Bohl does not actually use point-set theory 
in his proof, though sets of number-points frequently appear. 
More recently F. BernsteinJ has shown by point-set methods 

* Namely, that some one of the n should be greater than the sum of all 
the others, or n — 2. 

t Crelle's Journal, vol. 135 (1909), p. 189. 
t Math. Ann., vol. 71 (1911-12), p. 417. 
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that the total set of points (p, f) for which the mean 
motion exists has a Lebesgue measure 0. Bernstein then 
advances a philosophical or physical principle in which he 
asserts that in physical measurement we can never take 
account of a set of points of measure 0; consequently, for us 
there can be no mean motion except in the Lagrangian cases. 

Into a discussion of this interesting but questionable prin
ciple I shall not enter. What I do wish to do, however, is to 
point out that both this result and that of Poincaré are with
out doubt typical of the exceeding complications of physical 
nature which must increasingly engage the mathematician's 
attention. Thus, for example, orbits possessing a specified 
character and those which do not, may be tangled densely 
together in the space of the parameters on which these orbits 
depend. It is to the point-set theory that one must turn to 
control the two sets of parameters both quantitatively and 
qualitatively. Already groups of exceptional points of meas
ure 0 have been discovered with considerable frequence in the 
theory of functions. By allowing now for such a set of 
exceptional points in an interval or field we can often obtain 
the necessary or sufficient condition for a desired result, for 
instance in the case of Fourier's series. Prior to the introduc
tion of the Lebesgue measure no general theorems were 
visible because when the cases pro and the cases con were both 
infinite in number, there was no means of overcoming the 
difficulty and reaching a definite result. Undoubtedly, also, 
we must expect to control many phenomena in astronomy 
and dynamics only by admitting a set of exceptions of measure 
0. 

The introduction of measure also broadens the scope of the 
theory of probability, which is so fundamental to a large part 
of physical speculation. For by its use account can be taken 
of infinite sets of discrete points, dense and complicated; 
and more generally, exceptional cases, infinite in number, can be 
brought under the theory of probability by attributing to them 
a probability proportional to the measure of the corresponding 
points in the space of the parameters upon which they depend, 
though care must be taken inasmuch as measure is not an 
invariant of analysis situs and hence may be dependent on the 
parameters introduced. This application of measure is as 
yet prospective rather than actual. In this connection I 
should mention also Borel's treatment of probability for a 
countably infinite number of cases. 
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Two other aspects of the above discussed work of Poincaré 
seem to me to be also worthy of attention. In the first place, 
to get a grip upon dynamical stability Poincaré abandons the 
infinitesimal transformation and considers instead the result 
of iterating a finite transformation arising in time T. From a 
single point or an arc traversed in time T there arises by 
iteration of the transformation a whole set of points or arcs, 
which are capable of point-set treatment. A wide field is 
opened in this manner for the future application of point-set 
methods, especially in dynamics and the theory of geometric 
transformations* As an instance of application to the latter 
subject I may cite my determination* of the form of a one-
parameter group of projective transformations when a single 
finite substitution is given instead of the generating infinites
imal substitution of Lie. I need not plead the prospective 
usefulness and importance of this iterative point-set method 
with those of you who heard Professor BirkhofTs paper at 
our last summer meeting. But I should also add that in his 
memoir on the movement of dynamical systems! he has ob
tained some notable results on dynamical stability by what is 
essentially direct point-set treatment of the infinitesimal 
transformation. 

The remaining aspect of Poincaré's transformation which 
I wish to recall is its assumed property of conserving volume. 
Later, in his last published memoir, % Poincaré put before the 
mathematical world an unproved theorem based on a similar 
restriction. If, namely, a circular ring is changed into itself 
by a continuous 1-1 transformation with preservation of areas 
and in such a way that the points of the one boundary are 
moved clockwise and those of the other boundary anti-clock
wise, there must be at least two invariant points within the 
ring. Clearly, this is a problem of analysis situs, but with 
an accessory condition of preservation of areas which makes 
it at the same time a problem of hydrodynamics. Professor 
Birkhoff's§ brilliant solution is, I hope, known to you all. 
His method contains a highly ingenious but, as he himself 
would recognize, somewhat artificial device. The natural 
attack seems to me to be through point-set methods, as was 

* Transactions, vol. 13 (1912), p. 353. 
f Bulletin de la Société Mathématique de France, vol. 40 (1912), p. 305. 
% Rendiconti del Circolo matematico di Palermo, vol. 33 (1912), p. 375. 
§ Transactions, vol. 14 (1913), p. 14. 
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apparently the thought of Poincaré. Results of similar 
import in analysis situs, but without the restriction of the 
preservation of volume, have been attained through point-set 
considerations by Brouwer, who shows, for example, that every 
continuous 1-1 transformation of a sphere of even dimensions 
into itself without reversal of circuit sense, or of a sphere of odd 
dimensions with such reversal, leaves at least one point in
variant. I t may be confidently expected that many results 
in hydrodynamics will be obtained when the requirement of 
invariability of area or volume is added. 

I turn now from celestial mechanics and hydrodynamics 
to the field of statistical mechanics. Consider a so-called 
gas-model, composed of a very large number N of molecules 
having each r degrees of freedom. The corresponding 
canonical equations of Hamilton, 

dq8W dE dp™ _ dE ( * = 1 , • • • , ! • ) , 
dt ~ dp™' dt ~~ dq™ (k = 1, • • -, N), 

involve r generalized coordinates q8
(k) and r moments p8

(k) 

and the total energy E. The 2rN quantities q8
(k\ ps™ 

determine a "phase" of the system. For geometrical repre
sentation a 2riV-dimensional space is required, called the phase 
space (Phasenraum). Now it was a great discovery of Liou-
ville, made independently a second time by Boltzmann 
and Poincaré, that in consequence of Hamilton's equa
tions volume must be an invariant integral of motion in 
this 2riV-dimensional space. The given value of the energy 
E determines what is called the energy-surface within this 
space, upon which the molecules move in a one-dimensional 
path. As the foundation of their gas and statistical investiga
tions Boltzmann and Maxwell assumed that the system was 
"ergodie." By an ergodic system is to be understood one 
in which a molecule so moves as to pass through every single 
point of the energy surface upon which it lies. Since, further
more, there is a unique motion at any point of the phase-
space, all the particles upon the energy-surface are describing 
one after another exactly the same curve. Now the possi
bility of such motion was assumed but not proved by Boltz
mann. Mathematically considered, this is tantamount to 
the assumption of the existence of a space-filling curve without 
double points. For if there were anywhere a double point in 
the path of a particle in the phase-space, the corresponding 
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gas-model would pass twice through the same state, and the 
particle would in consequence begin to repeat its motion 
without describing the rest of the curve. What would have 
seemed more improbable than that the freak space-filling 
curves first invented by Peano could ever have a practical 
bearing! Imagine the scorn of the average physicist for 
such impractical, crazy, mathematical pathology. Yet here 
is a master physicist Boltzmann not merely postulating the 
existence of space-filling curves upon his energy-surface but 
making an impossible assumption, and therefore an actually 
crazy one, that such curves can exist* without double points. 
The proof of their non-existence belongs to the point-set 
theory and results from Brouwer's theoremf that it is 
impossible to build two regions of different dimensions—in 
the present case J the (2rN — 1)-dimensional space-surface 
and the one-dimensional time-axis—one upon the other by 
means of a continuous 1-1 transformation. 

The impossibility of an ergodic system has been considered 
also from another standpoint by Plancherel,§ who shows 
that the path of a particle has a surface measure 0 and hence 
cannot fill the energy-surface as desired. It follows imme
diately that the number of different path-curves on the surface 
must be more than countable. || I may mention further that 
Rosenthal If has replaced Boltzmann's supposition by a quasi-
ergodic hypothesis, according to which each path on the 
energy-surface comes within any prescribed distance of every 
point of the surface. 

In essence the statistical mechanics is a universal application 
of averages or, in other terms, of a theory of probability. 
It is therefore to be anticipated that numerous other applica
tions will be here made of the theory of point-sets. 

The examples which I have brought to your attention are, 
I trust, sufficient to convince you that the point-set theory 
has vital relations to the study of dynamical trajectories as 
well as to geometry. I have preferred to illustrate its rôle 
with concrete examples rather than to indulge in abstract 

* Cf. Rosenthal, Annalen der Physik, vol. 42 (1913), p. 796. 
t Math. Ann., vol. 70 (1911), p. 161. 
t For this case the simple proof given by Jürgens suffices; cf. Jahresbericht 

der Deutschen Mathematiker-Vereinigung, vol. 7 (1898), p. 54. 
§ Annalen der Physik, vol. 42, p. 1061. 
I! This is also shown by Rosenthal (1. c.) who employs for that purpose 

Baire's concept of point-sets of the first and second categories. 
If Annalen der Physik, vol. 43 (1914), p. 894. 
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discussion. In so doing we have dug down to the very roots 
of geometry and dynamics but we have also touched the 
branches where the shoots are pushing out. Too much must 
not be claimed. Yet if the point-set theory is not the sap 
of the tree, it is at least one of its most indispensable in
gredients. The usefulness of any mathematical theory must 
be determined not by its isolation but by its ability to combine 
with other theories. In this the point-set theory has shown 
itself most elastic. Had I more time I would attempt to 
show you that it offers many of the same advantages as analyt
ical geometry. While strong for analysis and decomposition, 
it is equally strong on the constructive side. Complex group
ings of points are made simple, and the way is thus prepared 
for new discovery. And above all, in its development the 
arithmetization of analysis is kept close to geometrical intui
tion. 

In tracing the service of the theory of point-sets in geometry 
and dynamics, we have found only in part achievement, in 
part present evolution and promise. But it is precisely be
cause of this mocking incompleteness that I have chosen for 
my topic today the rôle of the point-set theory in geometry 
and dynamics, trusting that for you also this will be its lure. 

UNIVERSITY OF WISCONSIN, 
MADISON, WIS. 

AN ENUMERATION OF INTEGRAL ALGEBRAIC 
POLYNOMIALS. 

BY PROFESSOR A, B. FRIZELL. 

(Read before the American Mathematical Society, January 1, 1915.) 

THE proof given by Weber* that the algebraic numbers 
form a countable set orders them according to the values of a 
certain function of the coefficients in their defining equations. 
The present note suggests a more direct enumeration of these 

n 

equations. The algebraic polynomials ]£ aiXn~~l in which all 
coefficients are natural numbers can be put into one-to-one 
correspondence with the set of natural numbers by the fol-

* Algebra, Bd. II, p. 824. 


