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IV, we find that there is a unique solution of equations (b) 
subject to the condition that z is integral. We thus conclude: 

In order that p2 (p =j= 3) shall be representable in the form 
g(x, y, z), with the condition x + y + z = p, it is necessary and 
sufficient that p be of the form Qn + 1 and this representation, 
when it exists, is unique. 

In case (c) the second equation has the obvious solution 
u — v = p. This solution will yield integral z only when p 
has the form 3k + 2. The solution is unique for such p 
since it follows from the theory of binary quadratic forms that 
such a prime power p2 can be represented in the form u2 — uv 
+ v2 only when u—v = poYU=p, v = 0, the latter solution 
giving z non-integral in the present case. If p is of the form 
3& + 1 then the second equation in (c) has the solution u = p, 
v = 0; this gives rise to integral z and hence to a representation 
of the kind sought. The representation in this case is not 
necessarily unique, since the second equation in (c) may have 
a second solution giving rise to integral z. We have the fol­
lowing result : 

The prime power p2 (p + 3) can be represented in the form 
g(x, y, z) subject to the condition x + y + z — 1. 
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§ 1. Introduction. 

I N the Annals of Mathematics, volume 16 (1915), pages 
123-133, I proposed a set G of eight axioms for the linear con­
tinuum in terms of point and limit. Betweenness was defined,* 
and it was stated that the set G is categorical with respect to 
point and the thus defined betweenness.f In the present paper 
it is shown that, although this statement is true, nevertheless 

* See Definition 3, loc. cit., p. 125. 
t This statement, which is proved in the present paper, implies that if 

K is any statement in terms of point and betweenness, then either it follows 
from Axioms 1-8 and Definition 3 that K is true or it follows from Axioms 
1-8 and Definition 3 that K is false. 
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G is not absolutely categorical,* that is to say it is not cate­
gorical with respect to 'point and limit, the undefined symbols 
in terms of which it is stated. 

An absolutely categorical set is obtained if Axiom 5 is 
replaced by the following axiom. 

AXIOM 5'. If n and r2 are two mutually exclusive, non-
complementary rays,f then every infinite set of points lying in 
S — (Vi + r2) has at least one limit point. 

§ 2. On the Non-Categoricity of the Set G. 

That G is not categorical is shown by the existence of the 
following examples E and E&. The letter K will be used to 
denote the statement that the point P is a limit point of the 
point set M whenever every segment containing P contains 
at least one point of M distinct from P . 

E&. Let the space S be an ordinary linear continuum 
(0 < x < 1) but interpret the statement that P is a limit point 
of M to mean that P is a limit point in the ordinary sense of 
a rational subset of M. Here Axioms 1-8 are satisfiedj but 
statement K is false. 

E. Let S be an ordinary linear continuum and let limit 

* For definition of categoricity (in the absolute sense) see O. Veblen. 
"A system of axioms for geometry," Transactions of the American Mathe­
matical Society, vol. 5 (1904), pp. 343-384. 

t If P is a point and S is the set of all points, and S — P = SP' + SP", 
where SP' and Sp" are mutually exclusive connected point sets neither of 
which contains a limit point of the other one, then SP' and Sp" are called 
rays. If B is a point of the ray SP then the ray SP is denoted by PB. 
The ray 8P is said to be complementary to (or the complement of) the 
ray SP". 

t That Axiom 5 is satisfied in this example may be proved as follows. In 
this proof the phrase "limit point" (unitalicized) has its ordinary meaning 
while "limit point" (in italics) is to be interpreted as defined in E5'. 

Suppose that S = K\ + K2 where Ki and K2 are mutually exclusive 
point sets. There are two cases to be considered. 

Case I. Suppose K\ contains no rational subset. Then i£2 contains 
the set of all rational points. But every point of S is a limit point of this 
set. Hence every point of Ki is a limit point of K2. 

Case II. Suppose K\ = R\ + I\ and i£2 = R2 + I'2, where .Ri and R2 
are composed entirely of rational points, while Ik (fc = 1, 2) either is 
vacuous or is composed entirely of irrational points. Suppose K\ contains 
no limit point of R2 and K2 contains no limit point of Ri. Then one of the 
point sets h and 12 must contain a limit point of the other one. Suppose 
Ii contains a limit point of I2. Since every point of I2 is a limit point of 
Ri + R2 but not of .Ki, therefore every point of 72 is a limit point of R2. It 
follows that 7i contains a limit point of R2 and therefore Ki contains a 
limit point of K2. 
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point have its usual significance. In this example also Axioms 
1-8 are all satisfied. But here the statement K is true. 

From the existence of these two examples it is clear that 
neither K nor its contradictory is a consequence of Axioms 
1-8. Hence this system of axioms is not absolutely cate­
gorical. 

§ 3. Consequences of Axioms 1~4, 6, 7. 

THEOREM A. No point is a limit point of a finite set of points. 
Theorem A is a consequence of Axioms 2 and 3. 
THEOREM B. Every ray contains infinitely many points. 
Theorem B is a consequence of Theorem A and Theorem 1.* 
THEOREM C. Every ray contains an infinite set of points 

that has no limit point. 
Proof. By Axiom 7 there exists a countable set of points R 

such that every point either belongs to R or is a limit point of R. 
If the ray AB did not contain infinitely many points of R, 
then, by Theorem B, Axiom 2 and Theorem A, AB would 
contain a limit point of AB', its complement. But this is 
contrary to Definition 2. Hence AB and R contain infinitely 
many points in common. Let Pi, P2, Ps be the set of all such 
common points. By Theorem 11 there exists a point X± 
such that APiXi. There exists Ki such that AXiKi. By 
Theorem 2, AXi contains X\Ki. But AX\ is the same as AB. 
Thus AB contains X\Ki. But, by Theorem 4, X^PiA. 
Therefore Pi is on X\A. Consequently Pi is not on X\K\. 
Thus the ray X\K\ lies in AB but does not contain Pi. Simi­
larly there exists a ray X2K2 lying in XiKi (and therefore in 
AB) and not containing P2. Continue this process, thus 
obtaining two sequences of points Xi, X2, • * • and K\, K2, • • • 
such that AB contains XnKn, XnKn contains Xn+iKn+\ and 
XnKn contains no point of the set Pi, P2 , • • •, P«. Suppose 
the infinite set of points X\, X2, Xs, • • • has a limit point X. 
The points Xn+i, Xn+2, Xn+z, • • • all lie on XnKn. Hence 
for every n, X lies on XnKn. Now A is not on XnKn. Hence 
it is not on XnX. Therefore AXnX is true for every n. 
Hence XA contains every Xn. But XnA is the complement 
of XnKn, and therefore contains Pi, P2, Ps, • • -, P n . Further­
more XA contains XnA. Therefore XA contains all the points 

* Arabic numerals are used for̂  theorems and definitions contained in 
my paper "The linear continuum in terms of point and limit," loc. cit. 
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Pi, Pit • ", Pn- But there exists a point Y such that AXY. 
The rays XY and XA are complementary. Therefore XY 
contains no Pn. But XY is a subset of AB. Therefore XY 
contains no point of R. Hence Y is not a limit point of R. 
Thus the supposition that the set of points X\, X2, • • • has 
a limit point leads to a contradiction. 

§ 4. Consequences of Axioms 1~4, 5f, 6, 7. 

THEOREM D.* There do not exist three mutually exclusive 
rays. 

Theorem D is a consequence of Axiom 5' and Theorem C. 
THEOREM E. If P is a limit point of M then every segment 

containing P contains at least one point of M distinct from P. 
Proof, Let AB denote a segmentf containing P, There 

exist points C and D such that ABC and BAD, The ray BC 
is the complement of BA, while AD is the complement of AB. 
If the point X does not belong to the segment AB, then, by 
Theorems 14 and 4 and Definition 3, X is not common to the 
rays AB and BA, Hence if no point of M except P is in the 
segment AB then M = Mi + M2, where no point of Mi 
except P is in AB and no point of M2 is in BA, But P is in 
both AB and BA, Hence P is a limit point of neither M± 
nor M2, Therefore, by Axiom 2, P is not a limit point of M. 
But this is contrary to hypothesis. 

THEOREM F . There exists a countable, everywhere dense% 
set of points. 

Theorem F is a consequence of Axiom 7 and Theorem E. 
I t follows! from Theorems 4-14 and Theorem F that the 

set of Axioms 1-71| is categorical with respect to point and 
betweenness as defined in Definition 3. 

THEOREM G. If every segment containing P contains at 
least one point of M distinct from P then P is a limit point of M. 

Proof. Between S and the linear continuum (0 < x < 1) 
there is a one-to-one reciprocal correspondence that preserves 

* See Axiom 5, loc. cit., p. 126. 
t The segment AB is the set of all points [X] such that AXB. 
t A set of points M is said to be everywhere dense if every segment 

contains a point of M. 
§ See G. Cantor, "Zur Begründung der transfiniten Mengenlehre, I," 

Mathematische Annalen, vol. 46 (1895), p. 510. 
|| It is to be noted that Theorems E and F are both consequences of 

Axioms 1-7 as well as of Axioms 1-4, 5', 6, 7. 
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order. I t follows that M contains an infinite set of points 
Pi, P2, P$, • • • such that for every segment r containing P 
there exists n such that Pn+u Pn+2> Pn+s, • • • all lie in r. 
I t follows, with the help of Axiom 5', that the set of points 
Pi, Pi, Ps, • • • has at least one limit point 0. Suppose that 
0 is distinct from P . Then there exist points A, B, and C in 
the order APBOC. There exists n such that Pn+i, Pn+2, 
Pw+3, • • • all lie in the segment ^4P. Hence not more than n 
points of the set Pi + P2 + Pz • • • lie in the segment BC. 
Therefore, by Theorem E, Axiom 2 and Theorem A, 0 is 
not a limit point of Pi + P2 + Ps • • •. Thus the supposition 
that P is distinct from 0 leads to a contradiction. I t follows 
that P is a limit point of Pi + P2 + P3 + • • • and therefore 
of M. 

§ 6. Conclusion. 

THEOREM H. The set of Axioms 1~4, 5', 6, 7 is an abso­
lutely categorical set of axioms for the linear continuum. 

Proof. I t has been shown that this set of axioms is cate­
gorical with respect to point and betweenness as defined in 
Definition 3. But every statement in terms of point and 
limit point of a point set is,* in the presence of these axioms 
and Definition 3, equivalent to a statement in terms of point 
and betweenness. I t follows that the set of Axioms 1-4, 5', 
6, 7 is categorical with respect to point and limit point of a 
point set. 

That, in the set of Axioms 1-4, 5', 6, 7, Axioms 2, 3, 4, 5', 
and 6 are independent is shown by Examples E2-EQ of my 
paper in the Annals. That 1 and 7 are independent in this 
set is shown by the following examples, Ei and E7. 

Ei. 8 is an ordinary linear continuum. The point P is 
a limit point of the point set M if and only if P is a limit point 
of M in the usual sense but M is not the set of all points. 

JS7.f 8 is the set of all real number pairs (x, y) such that 
0 < x < 1 and 0 ^ 2/ ^ 1. The point (xi, yi) is a limit point 
of the point set M if, and only if, it is true that corresponding 
to each preassigned positive number e there exists, in the set 

* See Theorems E and G. 
t The example E7 was constructed with the assistance of an example 

given by Veblen in connection with his postulate of uniformity. Cf. O. 
Veblen, "Definition in terms of order alone in the linear continuum and in 
well-ordered sets/' Transactions of the American Mathematical Society, 
vol. 6 (1905), p. 169. 
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M, a point {x, y), distinct from (xh y{), such that 1) | a: — a?i | 
< e, 2) x — Xi = 0 and | y — y\ | < e, in case y\ is distinct 
from 0 and from 1, 3) x ^ xi if yi = 0, 4) £ ^ #i if 2/1 = 1. 

UNIVERSITY OF PENNSYLVANIA. 

A PROBLEM IN THE KINEMATICS OF A RIGID 
BODY. 

BY PROFESSOR PETER FIELD. 

T H E problem of finding the acceleration of any point in a 
rigid body when the accelerations of three points are given, 
and incidentally of finding what is by this means determined 
regarding the velocities, has received but little attention. A 
theorem due to Burmeister solves the problem of finding the 
acceleration of any point in the plane of the three points 
whose accelerations are given. The theorem states: "If at 
four coplanar points Pi, P2, P3, P4 the accelerations be drawn, 
their extremities lie in a plane and form a quadrilateral which 
is affine with the quadrilateral formed by the four points." 

R. Mehmke* and J. Petersenf have considered the general 
case, but their results do not agree, owing to an oversight in 
Petersen's treatment. While their work is independent, the 
proof in both cases depends directly on the fact that when the 
distance between two points is constant the projections of 
their velocities on their joining line are equal and the projec­
tions of their accelerations on this line differ by o)H, I being 
the distance between the two points and œ the angular 
velocity of the line. The purpose of this paper is to show that 
the problem can be solved very simply by using the expressions 
for the accelerations which are ordinarily given in text books 
on mechanics, and by this method the kinematical meaning 
of the solution is also evident. 

Let there be given the accelerations at three points. I t is 
proposed to find what can be determined regarding the kine­
matical state of the body at the given instant. As the accel­
eration at any point in the plane of the three points can be 

* Festschrift zur Feier des 50jâhrigen Bestehens der technischen 
Hochschule Darmstadt, page 77. 

f Kinematik, page 46. 


