
DIFFERENTIAL GEOMETRY OF PLANE CURVES. 317 

SOME REMARKS ON THE HISTORICAL DEVELOP­
MENT AND THE FUTURE PROSPECTS OF 

THE DIFFERENTIAL GEOMETRY 
OF PLANE CURVES.* 

BY PROFESSOR E. J. WILCZYNSKI. 

PROBABLY the most fundamental characteristic of the 
human mind is its hatred for contradictions. All of our 
thinking is fundamentally influenced by this dislike; and the 
rôle of the mathematician, in his relation to reality, may be 
described in a fairly adequate manner by saying that it is his 
business to remove all contradictions from our discussions 
and, by gradually extending the scope of these discussions, to 
show that the world as a whole is thinkable. 

To justify the validity, in the purely mathematical sense, 
of any construction of the intellect, absence of contradictions 
is necessary and sufficient. But the mere absence of con­
tradictions from a realm of thought does not necessarily give 
it that essential artistic and harmonious one-ness which leads 
us to think of it as a unit. A peculiarity of the human mind, 
almost as important as its hatred for contradictions, is its 
dislike for sudden and frequent changes in the point of view. 
Thus, quite apart from the obvious practical difficulties of 
studying plants and stars and souls at the same time, the mind 
for the sake of its own peace and convenience, following its 
desire to move along a straight line, has divided knowledge 
into compartments, and refuses to think of more than one of 
these compartments at the same time. This procedure does 
not disturb in the least the profound conviction, present I 
believe in all thinkers, that at some future time from some 
other higher point of view the separateness of these compart­
ments will be abolished. Indeed, we cannot help but think 
that a thoroughgoing unification of each separate realm 
is the best possible preparation for an ultimate and complete 
generalization which shall include the whole. 

It is my purpose to-day to try and show you how one funda-
* Address of the retiring chairman of the Chicago Section of the American 

Mathematical Society, read at Columbus, Ohio, December 30, 1915. 
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mental idea has dominated and still dominates in the realm 
of differential geometry. I shall confine my discussion to the 
differential geometry of plane curves primarily on account of 
the comparative ease with which we can visualize configura­
tions in the plane. But it is a notable fact that even in this 
limited domain so many problems have remained untouched, 
problems which it is easy to formulate and not difficult to 
solve. Some of the notions which I shall discuss, although 
conceived in admirable fashion nearly a century ago, have 
remained practically unnoticed. You would look for them in 
vain in any of our modern treatises, although these contain 
many other things of far greater difficulty and of much less 
interest. In fact, so completely have these ideas been neg­
lected, that most mathematicians are probably under the 
impression that the differential geometry of plane curves is a 
very much restricted and uninteresting field not at all adapted 
for further research. Nevertheless it is true that scarcely one 
of the notions which will arise in our discussion to-day has 
been studied as fully as it deserves, while most of them have 
not as yet received any consideration whatever. 

The notion of a general plane curve is at bottom identical 
with the general notion of function. I t is obviously impossible 
to prove, by documentary evidence, that the ancient geometers 
did not possess the idea of a general curve. But we may assert, 
I think, that the available evidence indicates that the an­
cients knew how to deal only with very special curves such as 
straight lines, circles, conies, and a few other curves, including 
certain spirals. The relation between the notions " function " 
and " curve " only became evident in the seventeenth century 
of our era, when Descartes and Fermât had laid the founda­
tions of analytic geometry, and it was the recognition of this 
relation which brought the notion of a general curve into the 
consciousness of mathematicians everywhere. But analytic 
geometry did more than merely formulate the notion of 
a general curve; it also provided a method for its investiga­
tion. If the first fruit of this union between analysis and 
geometry seemed to be of profit primarily for geometry by 
providing it with a new and limitless field for research, it soon 
became apparent that the union was to be profitable for 
analysis also. For the geometric problems which arose in this 
connection, such as the construction of a tangent to a curve 
with a given equation, the determination of the length of a 
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given arc of the curve, the calculation of areas bounded wholly 
or partly by curved lines, led inevitably toward the invention 
of the calculus. In fact, the method employed by Fermât, for 
instance, for determining the tangent of a curve really involved 
the essential processes of the differential calculus. This 
method is very simple and consists in formulating the definition 
of a tangent as follows. Take a point P on the curve, the 
point whose tangent we wish to draw. Join P to a second 
point Q which is also on the curve, and let us seek the limiting 
position which the line joining P to Q approaches, when Q, 
moving always along the curve, approaches P as a limit. This 
limiting position of the secant PQ is called the tangent. 

Of course it was evident that the tangent would pass through 
P ; the only problem was that of finding the direction of the 
tangent. The calculus, as developed by Newton and Leibniz, 
made it an easy matter to translate Fermâtes definition of a 
tangent into the language of analysis and then actually to 
determine, by calculation, the direction of the tangent for a 
very extensive class of curves. Thus the problem of tangents 
could be regarded as solved. The normal could then be 
defined as a line perpendicular to the tangent at the point of 
contact, and its determination offered no further difficulty. 
I t is worthy of remark, however, that one of the methods pro­
posed by Descartes determines the normal first and the tangent 
afterward. We shall amplify this remark, a little later. 

The analytic formulation of the notion of radius of curvature 
soon followed. Let us take three points P , Q, and R on a 
curve and let us pass a circle through these points. As Q 
and R move along the curve, approaching P as a limit, this 
circle will in general approach a limiting position which is 
called the circle of curvature. Its radius is called the radius 
of curvature, and its center the center of curvature. The 
familiar formula for the radius of curvature was published, 
apparently for the first time, in Newton's "Methodus Fluxi-
onum " of 1736, although the notion itself was much older 
and was applied with great success by Huygens as we shall see 
immediately. 

If the curve under consideration is itself a circle, the circle of 
curvature of every one of its points is of course that same 
circle. But if the original curve is not a circle, each of its 
points will have in general a different circle of curvature and 
the problem arises to find the locus of the centers of all of these 
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circles. This locus, called the evolute of the given curve, was 
first considered by Huygens, without of course making use of 
the notations of the calculus, in his "Horologium Oseillatorium" 
published in 1673. Huygens saw that the normals of the 
original curve would be the tangents of the evolute, and that 
the original curve could be regarded as the locus of the end-
point of a string which was being gradually unwound from 
the evolute. This showed him that the difference between 
the lengths of two radii of curvature of the original curve was 
equal to the length of the corresponding arc of the evolute. 
Since the length of the string could be changed, it became ap­
parent that, while every curve has only one evolute, it is 
itself the evolute of infinitely many other curves which are 
called its involutes. These involutes moreover are clearly 
the orthogonal trajectories of the tangents of the given curve. 

For Huygens these notions were of great importance as 
applied to the special case of the cycloid, a curve first considered 
by Galileo. For he had recognized the isochronous property 
of the cycloid and had therefore shown that the cycloid was 
the most desirable curve for the oscillations of a pendulum. 
The problem now arose to devise a method which would com­
pel the oscillations of a pendulum to take place along a cycloid. 
Huygens observed in this connection that a weight attached 
to a string would describe an arc of a cycloid if the string 
were attached in such a way as to cause it to wind and unwind 
along checks which had been given the form of an evolute of 
a cycloid. In fact it was this problem which led Huygens to 
his general theory of evolutes. He now found the remarkable 
theorem that the evolute of a cycloid is an equal cycloid, a 
theorem which must have appeared to him as a beautiful 
manifestation of the divine harmony of geometry. 

The tangent may be regarded as a first approximation to the 
given curve in the neighborhood of one of its points. In 
modern terminology we may say that the tangent serves as a 
geometric image for the first derivative f{x) of the function 
f(x), whose graph is the curve under consideration. The 
circle of curvature may be regarded as a second approximation 
to the curve or as a geometric image of the second derivative 
of ƒ(#)• For a long time no attempt was made to find a geo­
metric image for the third derivative. In 1841, however, 
Abel Transon published his beautiful " Recherches sur la 
courbure des lignes et des surfaces," in which he takes not only 
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this step but also the next, by devising appropriate geometric 
images both for the third and fourth order derivatives. 

Transon first introduces the new notion which he calls 
" déviation " and which has been translated by the term 
" aberrancy " in the very few places where any notice has 
been taken of Transon's work. This notion is as follows. Let 
P be a point on a curve and let a chord be drawn parallel to 
the tangent at P and very close to this tangent. Let Q and 
R be the points (in the neighborhood of P) in which this chord 
intersects the curve, and let L be the middle point of QR. 
As QR approaches the tangent at P as a limit, the line PL 
will in general approach a limiting position called the axis 
of aberrancy. Let ô be the angle which the axis of aberrancy 
makes with the normal. The tangent of this angle is given 
by the formula 

m + a dy v + Vv/teWffiv 

and Transon calls tan 5 the aberrancy of the curve at the point 
P. It would obviously be equal to zero at any point of a circle. 

From familiar properties of conic sections it follows at once 
that the axis of aberrancy at any point of a conic is the line 
which joins this point to the center of the conic. Let us ob­
serve further that the expression (1) for the aberrancy con­
tains only the first, second, and third derivatives of y = f(x), 
so that the aberrancy is indeed adapted for the purpose of 
visualizing the third derivative. 

The equation of a conic contains five essential constants, and 
a conic is therefore determined by five of its points. The 
condition that one curve shall have third order contact with 
another, may be expressed by saying that four of the points 
of intersection of the two curves coincide. Consequently there 
exists a one-parameter family (a pencil) of conies each of which 
has third order contact with the given curve at the given 
point P. All of these conies pass through P; they all have the 
same tangent, the same circle of curvature, and the same 
axis of aberrancy at P. Among these conies there will be 
one and only one parabola; let us call it the osculating parabola. 
Since, as we have just seen, the axis of aberrancy of the point P 
of our given curve is also the axis of aberrancy for each of the 
conies which has third order contact with our curve at P, 
and since the axis of aberrancy for a point of a conic passes 
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through the center of the conic, and since finally the center of 
a parabola is at infinity, we see that the axis of the osculating 
parabola is parallel to the axis of aberrancy. 

To locate the axis of the osculating parabola completely 
we have, in addition to the remark just made, the following 
simple construction also due to Transon. Let D be the or­
thogonal projection of the center of curvature C upon the 
axis of aberrancy, and let E be the orthogonal projection of 
D upon the normal. Then the axis of the osculating parabola 
will pass through E. Since it must also be parallel to the axis 
of aberrancy we may now regard the axis of the osculating 
parabola as known. 

The focus of this parabola must clearly be on a line through 
the point P which makes with the normal at P an angle equal 
to that made with this same normal by the axis of aberrancy. 
Thus the focus will be the intersection of this line with the 
axis. The directrix will of course be perpendicular to the 
axis. I t will also pass through a point on the normal on the 
convex side of the curve whose distance from P is equal to 
half the radius of curvature. This last result is obtained by 
Transon as a corollary from a more general theorem. He 
considers the one-parameter family of parabolas, each of which 
has second order contact with the given curve at P . The 
directrices of all of these parabolas pass through the point 
just described, and the locus of their foci is a circle whose di­
ameter is that half of the radius of curvature which terminates 
at P . 

Among the conies which have third order contact with the 
given curve at P , there will be one for which the order of con­
tact rises to the fourth order at least. This is the osculating 
conic of the point P and may be regarded as having five 
consecutive points in common with the curve. In common 
with all of the conies having third order contact with the 
given curve at P , it has its center on the axis of aberrancy, 
and the position of the center on the axis of aberrancy may 
therefore be regarded as a geometric equivalent for the value 
which the fourth derivative of y = f(x) assumes at the 
point P . The properties which I have mentioned suffice to 
determine the osculating conic, but Transon develops some 
further theorems which facilitate its construction very con­
siderably. I shall quote some of these on account of their 
great geometric interest. 
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These theorems are again concerned with the pencil of 
conies which have third order contact with the given curve 
at P . Transon finds that the axes of these conies envelop a 
parabola, whose directrix is the axis of aberrancy, and whose 
focus is the orthogonal projection of the center of curvature 
upon the line which joins P to the focus of the osculating 
parabola. This latter line is very easy to construct since, as 
we have seen, the normal bisects the angle between this line 
and the axis of aberrancy. The auxiliary parabola of Transon, 
I should like to add, also touches the lines which are tangent and 
normal to our original curve at P . As a consequence of this 
theorem of Transon's the directions of the principal axes of 
the osculating conic are obtained by drawing the two tangents 
from the center of the osculating conic to the auxiliary parab­
ola. 

The following property, not mentioned by Transon, is also 
of interest. Among the conies which have third order or four-
pointic contact with the given curve at P , there will be infinitely 
many hyperbolas and ellipses, but in general no circle. This 
indicates the existence, in this family of conies, of a unique 
ellipse of minimum eccentricity. As the center of such a 
four-pointic conic moves along the axis of aberrancy on the 
concave side of the curve, starting from P , the eccentricity e 
of the corresponding ellipse will decrease continuously from 
unity toward the minimum value eh and will then increase, 
approaching the limit 1 as the center recedes beyond bound. 
Thus every value of e, between the minimum value e\ and unity, 
will be attained twice. I t is not difficult to show that the 
center 0 of the ellipse of minimum eccentricity and the 
centers, 0\ and 02, of any two of these ellipses which have the 
same eccentricity are so related that PO is the geometric mean 
of OPi and OP'2. In general this four-pointic ellipse of mini­
mum eccentricity is quite distinct from the osculating conic. 
I t will coincide with the osculating conic however if and only 
if the original curve is a logarithmic spiral. Moreover, the 
eccentricity of the four-pointic ellipse of minimum eccentricity 
will in general change as P moves along the given curve. I t 
will be constant if and only if the given curve is a logarithmic 
spiral. 

We have seen how many interesting questions present 
themselves when we attempt to explore the relations between 
these various configurations all of which are determined by 
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the properties of a given curve in a single one of its points. 
But each of these configurations gives rise to new problems 
if we think of the point P as moving along the given curve. 
Thus, in the simplest case, already mentioned, the locus of the 
centers of curvature defines a new curve, which is at the same 
time the envelope of the normals which is called the evolute. 
In similar fashion we may investigate the envelope of the axes 
of aberrancy of a given curve. This envelope is at the same 
time the locus of the centers of its osculating conies. We 
may also study the envelopes of the axes and directrices of the 
osculating parabolas, the loci of their foci and vertices, and 
it is easy to formulate corresponding problems for the oscu­
lating conic and for the four-pointic ellipse of minimum ec­
centricity. Only a mere beginning of such a theory is avail­
able at present and most of this is due to Cesàro who made 
use of some of these notions in his " Lezioni di Geometria 
intrinseca," with the main emphasis however not upon the 
general theory but upon the application to certain well-known 
simple curves. 

But I wish to call your attention primarily to a general 
method which enables us to push still farther the investigation 
of the properties of a curve in the vicinity of one of its points. 
The details which I have presented will serve to make clear 
the following general notions. Let us consider an equation 
of the form 
(2) <p(x, y ; ah a2, • • •, an) = 0 

which involves the coordinates (x, y) of a point and n essential 
constants ai, a2, • • •, an. For every set of values ai, a2, • • •, an 
this equation represents a curve. All of the curves repre­
sented by such an equation are said to form an n-parameter 
family. The condition that a curve of this family should 
pass through a given point gives rise to one relation between 
the parameters ai, • • •, an. Thus, in general, one curve of the 
family, or a finite number of such curves, is determined by 
the condition that the curve shall pass through n given points. 
If the parameters enter the equation (2) linearly, as is most 
frequently the case, there will be just one such curve passing 
through n given points, if we leave aside certain exceptional 
cases. 

If then we take n points on any given curve, there will 
exist in general a unique curve of the n-parameter family (2) 
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which passes through them, and this curve will ordinarily 
approach a definite curve of the w-parameter family as a limit, 
if the n given points approach coincidence. The resulting 
limit curve will be said to osculate the given curve at the given 
point, in as much as it will have closer contact (n-pointic or 
(n — l)th order contact) with the given curve at the given 
point than any other curve of the class defined by (2). To 
illustrate this notion we observe that the straight lines of the 
plane form a two-parameter family and that the tangent is 
the osculating straight line; that the circles form a three-
parameter family and that the circle of curvature is the os­
culating circle. Moreover we have already made use of this 
terminology in our discussion of the osculating parabola and 
the osculating conic. 

But our previous discussion shows quite clearly that, besides 
the osculating curves of a given class, those curves of the class 
are also of very great interest for which the order of contact 
falls short of the maximum by a single unit. Let us speak 
of such curves as penosculants. Evidently, from what has 
been said, the locus of the centers of the penosculating circles 
of a given point of a curve is the corresponding normal. In 
fact it was by means of this remark, to which we have already 
alluded very briefly, that Descartes defined the normal and 
thus indirectly solved the problem of tangents. Again we 
have seen that the locus of the foci of the penosculating parab­
olas is a circle whose diameter is equal to half the radius of 
curvature, and that the locus of the centers of the penosculating 
conies is the axis of aberrancy. Several others of the theorems 
which we have mentioned may be expressed more compactly 
by the help of this new terminology. 

After this preliminary discussion, let us inquire what classes 
of osculants and penosculants ought to be introduced for the 
purpose of providing geometric interpretations for the de­
rivatives of order higher than the fourth. For we may regard 
the theory outlined so far as exhaustive for the first four orders. 

The general curve of the third order contains nine essential 
constants. Therefore the osculating cubic has nine consecu­
tive points in common with the given curve at P. The penos­
culating cubics have eight consecutive points in common with 
the given curve at P and form a pencil. One of the cubics of 
this pencil is of special interest because it has a double point 
at P. Of course one of its double point tangents touches the 
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given curve at P ; the other one crosses the curve at a non-
vanishing angle. That branch of the penosculating nodal 
cubic which actually touches the given curve has seven-
pointic or sixth order contact with it, and we may therefore 
use this cubic as a geometric image for the sixth derivative. 
The osculating cubic may of course be regarded as a repre­
sentative of the eighth derivative. 

The osculating cubic and the penosculating cubics were 
introduced by Halphen in his thesis on differential invariants 
in 1876. Halphen's interest was centered primarily upon the 
following feature of this situation. All of the penosculating 
cubics have, besides the eight points of intersection which are 
concentrated at P , a ninth point of intersection which I have 
called the Halphen point. Now it may happen that this ninth 
point also coincides with P , in which case P is called a coin­
cidence point. This will happen if a certain projective dif­
ferential invariant (in my notation the invariant 08) vanishes, 
and Halphen made use of these geometric notions for the 
purpose of calculating this invariant. He also showed that a 
curve may be composed entirely of coincidence points and that 
all such curves may be obtained from a certain logarithmic 
spiral by projective transformation. 

We have now obtained representative osculants for contact 
of the first four orders and for orders six and eight. I t remains 
to fill the gap for orders five and seven. In order to do this, 
we may consider special kinds of cubics distinguished by 
fundamental metric properties, just as the gap between the 
osculating straight line and the osculating conic was filled 
by means of osculating curves of order two distinguished by 
metric properties, namely by the osculating circle and parabola. 

A parabola is a conic which touches the line at infinity. 
We may define a parabolic cubic to be a cubic which touches 
the line at infinity. Such a cubic contains eight arbitrary 
constants indicating the existence of osculating parabolic 
cubics to represent the seventh derivative. These cubics 
are not however necessarily the best adapted for this purpose. 
There are other cubics which accomplish as much and which 
are more easily accessible, as for instance that particular one 
of the penosculating cubics whose asymptote is parallel to the 
normal. 

A circle may be defined as a conic which contains the so-
called circular points at infinity. I shall not attempt to explain 



1916.] DIFFERENTIAL GEOMETRY OF PLANE CURVES. 327 

this notion which is familiar to all mathematicians. A cubic 
which contains the circular points is called a circular cubic. 
The general equation of such a cubic contains seven arbitrary 
constants, indicating the existence of an osculating circular 
cubic which has seven-pointic or sixth order contact with the 
given curve, and which will probably for most purposes be a 
better representative of the sixth derivative than the one 
mentioned before. 

The penosculating circular cubics of the point P all have six 
consecutive points in common with the given curve at P . 
Besides they intersect each other in the two circular points at 
infinity. The determination of their ninth point of inter­
section and the condition for its coincidence with P offer 
problems which are strictly analogous to the corresponding 
problems involving the Halphen point. Among the penoscu­
lating circular cubics there is one which has a double point 
at P . There is also one whose real asymptote is parallel to 
the normal. This latter curve may serve as an image for the 
derivative of the fifth order. But of course there are other 
cubics, both circular and non-circular, which may serve as 
well. 

We may continue in this way to build up a theory of oscu­
lating algebraic curves of gradually increasing order, the 
osculants of each order being classified further according to 
the number of times that they pass through the circular 
points and the number of their asymptotes which are parallel 
to the normal. However I shall refrain from any further 
detailed exposition in this direction, only stopping to say that 
the analytic difficulties involved in actually determining the 
equations of these osculants up to and including the osculating 
cubic are far from insuperable. In fact, I actually have most 
of these equations at my disposal and they are much simpler 
than one might expect. 

The penosculating nodal cubic is of fundamental importance 
in projective geometry. The following remarks may serve to 
make this clear. By introducing a suitably chosen system of 
homogeneous coordinates and denoting the properly chosen 
ratios of these homogeneous coordinates by X and 7, the 
equation of any curve, if it is neither a straight line nor a 
conic, may be expanded in the form 

y = ±x2 + x5 + A7X
7 + . . . 
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in the vicinity of any one of its ordinary points. In this 
expansion A7 and all of the remaining coefficients will be ab­
solute projective invariants. The simplicity of this expan­
sion, and the uniqueness of its form, make it evident that the 
system of coordinates, to which this expansion corresponds, 
must be of peculiar importance. But this system of coor­
dinates is determined entirely by the properties of the penos-
culating nodal cubic. The triangle of reference has for two 
of its sides the double point tangents of this cubic and for its 
third side the line upon which lie its three points of inflection. 
Incidentally we may remark here that the relation of the 
simple quintic curve 

to the given curve is worthy of notice. 
The fundamental importance of the penosculating nodal 

cubic also appears when we attempt to interpret the simplest 
of all projective integral invariants. This integral corresponds 
so nearly to the notion of length of arc, which is the invariant 
integral of lowest order in the metric theory, as to justify the 
prediction that it will be found to be of the greatest importance 
in future developments of the projective theory. Thus, for 
instance, this integral enables us to formulate at once a notion 
which generalizes, in the sense of projective geometry, Cesàro's 
intrinsic equation of a curve. 

We have discussed osculating and penosculating curves of 
many different kinds, all of which however were algebraic. 
Transon also mentions the availability of the notion of an 
osculating logarithmic spiral, and in his projective theory 
Halphen makes use of the notion of an osculating anharmonic 
curve. The logarithmic spiral and the general anharmonic 
curve are transcendental curves to be sure, but they belong to 
a particularly simple type of transcendental curves. In fact, 
most of these curves are so closely related to algebraic curves 
that Leibniz thought it inadvisable to speak of them as 
transcendental, and invented a special name for them, call­
ing them interscendental curves. So far as I am aware, no 
other curves, except those mentioned, have ever been used as 
osculants in the theory of plane curves. 

Each of the osculants and penosculants which we have in­
troduced has a function to perform which may be illuminated 
by an aphorism; the osculant is the microscope of the geometer. 
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Thus, to the naked eye the courses of two curves, which at a 
common point have the same tangent and the same radius of 
curvature, are in the vicinity of that point so nearly identical 
as to make them appear indistinguishable. The introduction 
of the notions of axis of aberrancy and osculating parabola 
serves to magnify the differences between the two curves in 
such a way as to enable us to distinguish between them. 
Again, if the two curves also have their osculating parabolas 
in common, we may judge of their divergence by means of their 
osculating conies. Thus the notion of osculant serves the dif­
ferential geometer for the same purpose as does the micro­
scope in the laboratory of the biologist. It magnifies the in­
finitesimal differences between two different curves sufficiently 
to cause them to make an emphatic impression upon the mind. 

Thus the notions, osculant and penosculant, are the funda­
mental concepts of differential geometry. The systematic 
investigation of the magnitudes, loci and envelopes deter­
mined by the various classes of osculants and penosculants 
and the relations which exist between them makes up the 
whole subject matter of differential geometry. Differential 
properties of a general curve are merely integral properties of 
its osculants and penosculants. 

THE UNIVERSITY or CHICAGO, 
December y 1915. 

A CERTAIN SYSTEM OF LINEAR PARTIAL DIF­
FERENTIAL EQUATIONS. 

BY DR. H . BATEMAN. 

(Read before the American Mathematical Society, February 26, 1916.) 

1. IT is known that if a function V(xly ylf zlf h; x2, y% %2, h\ 
• • • ; xn, yn, 2n, tn) satisfies the system of %n(n + 1) partial 
differential equations* 

m dW i dW i ^ E L ^ J Ü l ( =1 9 Ï 
K) dxvdxq

 + dyvdyq
 + 'dzvdzq dtpdtq

 {V' q 1>Z>'"> n) 

it becomes a solution of the reduced system ot |(w — l)n 

* See for instance H. Bateman, Messenger of Mathematics, March, 
1914, p. 164. 


