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he adds to the W's linear combinations of the values of u and 
its first n — 1 derivatives at any finite number of points 
interior to the interval. The Green's function for this system 
is then defined by the same formula as is used by Birkhoff 
and it is found that the above integral converges to f(x) 
provided f(x) has a certain number of derivatives, which 
number never need exceed n, and provided certain deter­
minants formed from the constants of the auxiliary conditions 
do not vanish. In the case n is even it is further necessary 
to assume that the second point from either end of the in­
terval is farther from that end than the first point from the 
other end is from that end. 

24. Professor Huntington's paper refers to the theorem of 
Duhamel already discussed by Osgood, R. L. Moore, and Bliss 
in the Annals of Mathematics for 1903,1912, and 1914, namely: 
If otiy <X2, • • •, OLn and /?i, /?2, • • •, fin are two sets of infinitesimals 
such that lim (&•/«*) = 1 ; and if lim [a% + a% + • • • + an] = a 

»=oo w=oo 

exists, then lim [ft + /?2 + • • • + fin] will also exist, and be 
w=oo 

equal to a. The following example of the failure of this 
theorem is simpler than examples that have been previously 
given: Let ai = a/n, and fii = a/n + 2ic/n2, where a and c 
are fixed constants. Then lim ft/a* = 1 as n = oo ; but 
lim Sa* = a, while lim 2ft = a + e. 

25. Professor Osgood's paper appeared in full in the June 
BULLETIN. 

26. Professor Wilson's paper appeared in full in the May 
BULLETIN. 

F. N. COLE, 
Secretary. 

APPLICATION OF AN EQUATION IN VARIABLE 
DIFFERENCES TO INTEGRAL EQUATIONS. 

BY PROFESSOR G. C. EVANS. 

(Read before the American Mathematical Society, April 29, 1916.) 

IT is known that if the kernel of an integral equation of 
Volterra type is in the simple form of the difference alone of the 
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two variables, then the kernel of the resolvent equation is in 
the same form. We shall see presently that this result also 
holds for the kernel of the Fredholm equation, provided that 
it is periodic, the period being equal to the interval of inte­
gration. Moreover, the same condition of periodicity is 
sufficient to make the kernel of the resolvent equation of the 
same form as the original kernel when the latter is expressed 
by the formula 

(1) K(x,y) = nx+v) + 0(x-y)-

An obvious way to approach the problem is to make use 
of the partial differential equations 

dK , dK A . d2K d2K 
(2) dz + ^ = 0 and â?""^' 

which say respectively that the kernel K(x, y) is a function 
of the difference of the two variables, or a function of the form 
(1). The objection to this method is that there is nothing 
in the theory of the Fredholm equation which demands the 
existence of derivatives, and nothing which directly refers 
to them in the statement of the problem. 

Less immediate, and also less restrictive, is a treatment by 
means of Fourier series. The coefficients in the trigonometric 
development of the resolvent kernel have simple expressions 
in terms of those of the given kernel, on account of the special 
form of the latter. One can, in fact, get an instructive aperçu 
of the facts in the general problem of the Fredholm equation 
by considering, with these elementary methods, this special 
case. Here again, however, more seems to be demanded in 
the nature of the kernel than should be called for by the 
question which is the subject of this paper. 

§ 1. Some Difference Equations in Variable Differences. 

1. A necessary and sufficient condition that a function 
F(x, y) be in the form f(x + y) is that it admit the substi­
tution x' — x + t, yf = y — t, where t is arbitrary. Likewise, 
a necessary and sufficient condition that a function be in the 
form <p(x — y) is that it admit the substitution x' = x + t, 
y' = y + t> These conditions may be respectively expressed 
by means of the difference equations 
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(3) F{x + t,y-t)~ F(x, y) = 0, 

(4) F(x + t,y + f)~ F(x, y) = 0. 

2. In order to distinguish the more interesting case where 
K(x, y) is of the form (1), let us assume at first thati£(a*, y) 
is defined everywhere in the plane except at a point set of 
measure zero.* A necessary and sufficient condition that we 
may write K(x, y) in the form (1), except possibly at a set of 
points of measure zero, is that the condition 

(5) K(x+t+t',y+t-t')-K(x+t,y+t) 

-K(x+f,y-f) + K(x,y) = 0 

shall hold for all values of x, y, t, tf, except possibly for a point 
set of zero measure, one of the four points (x, y), (x + t, y + t), 
(x + t', y — f), (x+t+t',y+t — t') lying in that set 

3. The relation (5) says merely that if we take a rectangle 
of which the sides are parallel to the lines x+ y = 0 and 
x — y = 0, the sum of the values of the function at the 
extremities of one diagonal is equal to the sum of its values at 
the extremities of the other, i. e., if 1, 2, 3, 4 are the vertices 
in cyclic order, we have the equation 

(5') Kx + Ki = K, + Ki. 

If we have a second rectangle 3, 4, 5, 6 which has a side in 
common with the first, it is seen that in the relations 

K1+K3= K,+ Kit 

(6) ^ 3 + ^ 5 = ^ 4 + ^ 6 , 

K i + K§ = K<L + KG, 

the first two imply the third. 
Let us define a null set L as made up of the following one-

dimensional sets. Let it include all the lines x + y = const, 
or x — y = const, on which there is a not-null set of points 
where K(x, y) is not defined, and let x0, y0 be a point where 

* The discussion of this problem in connection with equation (5), below, 
as applied to point sets in general, offers an interesting generalization of 
some aspects of the theory of the hyperbolic differential equation : in par­
ticular, direct proofs of some of the existence theorems. (See a paper by 
the author soon to be published. 
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K(x, y) still remains defined. On the line x + y = x0 + yo 
there lie at most a null set of points where K{x, y) is not 
defined. Include in L the lines x — y = const, which go 
through these points; and operate similarly on the line 
x — y = XQ — yo» The total set formed in this way consti­
tutes L. 

The theorem of Section 2 will be established if we show that 
a necessary and sufficient condition that K(x, y) be in the form 
(1), except in L, is that the relation (5) hold unless one of the 
four points mentioned lie in L. 

4. That the condition is necessary follows at once by direct 
substitution. In order to show that it is also sufficient, let us 
write K(x, y) in the form $(x + y, x — y), and consider (5) 
in the form 

#(* + y + 2t, x - y + 2*0 - #(s + y + 2t, x - y) 

= <&(x + y, x - y + 2t') -$(x + y,x- y), 

which tells us that the right-hand member is invariant of the 
substitution xr = x + t, y' = y + t. We can give t then 
such a value that x + y + 2t = x0 + yo, and write 

*Oo + 2/o, x - y + 2t') - $(xQ + y0, x - y) 

= *(a + y, x ~ y + 2t') - $ 0 + y,x — y) 
or 

* 0 + y, a - y + 2t') - $Oo + i/o, « - y + 2t') 

= $ 0 + y, x - y) - $(#0 + 2/o, ̂  - 2/)-

The right-hand member of this equation is thus seen to be 
invariant of the substitution xf = x + t', y' = y — f, wher­
ever it is defined, and so we can give to t' a value such that 
x — V + 2t' = Xo — 2/o- Hence we have 

$(s + y, xo - 2/o) - $(#0 + 2/o, ̂ o - 2/o) 

= $(a + 2/, x - 2/) - *Oo' +yo,x — y) 
or 

(7) ZO, y) = $(3 + 2/. *o -• 2/o) + *(«o + yo,x- y) 

- $(a:o + 2/o, #o - 2/o) 

which proves the theorem. This result can also be obtained by 
a more geometrical treatment. 
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5. If instead of being defined over the entire plane, the 
function K(x, y) is defined over the rectangle R: a < x < A, 
b < y < B, it may be extended over the entire plane by first 
defining it in the interior of the circumscribed rectangle with 
sides parallel to the lines x + y = 0 and x — y = 0, and then 
defining it as having the value zero on the boundary of this 
rectangle and over the rest of the plane. The definition in 
this circumscribed rectangle is established by means of the 
relation (5'), and its uniqueness follows almost immediately 
by means of the relation (6). By then applying the theorem 
of Section 2 we have the following 

COROLLARY 1. The theorem of Section 2 holds, if instead of 
being defined over the entire plane, except for a point set of 
measure zero, it is defined, with the same exception, over the 
rectangle R: a < x < A, b < y < B. 

We have also the following theorems: 
COROLLARY 2. The condition (5) will still be necessary and 

sufficient if we add the restriction that \t\ and \tf\ are to be less 
than rj, where rj is assigned arbitrarily, positive, dependent on 
x, y if desired. 

This theorem is deduced immediately with the help of 
equation (6). 

COROLLARY 3. If the function K(x, y) is continuous at the 
points in which it is defined, the condition (5) may be replaced 
by one in which f = t, i. e., by the condition 

(8) K(x + 2t, y) -K(x+t,y + t)~ K(x + t, y - t) 

+ K(x, y) = 0. 
In fact, from (8) it follows that 

K(x + mt + nt, y + mt — nt) — K(x + mt, y + mt) 

— K(x + nt, y — nt) + K(x, y) — 0, 

where m and n are integers, and since every point in R is a 
point of the form (x-\- mt+ nt, y + mt — nt) or a limiting 
point of such points, we have the relation (5). 

COROLLARY 4. The relation (5) may be replaced by the one 
obtained from it by interchanging t and t', or by both relations 
together, and the theorem will still hold. 

COROLLARY 5. A necessary and sufficient condition that we 
may write K(x, y) in the form 
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(9) K(x, y) = f(x) + g(y) 

is that 

(9') K(x + t,y + t')~ K(x, y + t')- K(x + t, y) 

+ K(x, y) = 0. 
§ 2. Periodicity. 

6. The kernel of an integral equation and the kernel of the 
resolvent equation are connected by Volterra's relation. If 
we are dealing with the equation of Fredholm type containing 
a parameter X, the relation has the well known form 

(10) K(x, y) + kk(x, y) = X f K(x, £)fcx(J, y)d^ 
*J a 

= \fah(x,0K(£,y)dH. 

For generality the integral may be taken in the Lebesgue sense. 
From (10) it follows obviously that if K{x, y) is periodic in x 
with a certain period, kx(x, y) is periodic in x with the same 
period; and similarly for y. 

In regard to the kernels of the form (1), in which we are 
more specially interested, a necessary and sufficient condition 
that K(x, y) be periodic, with period p, in both arguments, is that 
^{x + y) and Q(x — y), as functions of a single variable, be 
each periodic with the same period p. Obviously the condition 
is sufficient. To show that it is necessary, notice that we 
have 

K(x +t,y+t)- K(x, y) = ¥(ar + y + 2t) - ¥(x + y), 

whence, taking t = p, 

(11) *(x + y + 2p) = *(x+y). 

But also 

K(x + p+t,y+t)~ K{x + p, y) 

= V(x+y + p + 2t) ~V(x+y + p), 
so that 

^(x + y + p + 2t) - ¥(x + y + p) 

= ¥(* + y + 2t) - tf (s + y), 
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and if t = \p, 

V(x + y + 2p) + ^(x + y) = 2 ^{x + y + p). 

Comparing this with (11), we have 

^(x + y + p) = ¥(x + y). 

From this and the periodicity of K(x, y) it follows that 

Q(x — y + p) = Q(x - y). 

Nothing is changed in these theorems if we except a point 
set of zero measure (in the case of the second theorem, a 
point set of the type L). 

§ 3. Kernels of the Form ^f(x + y) + Q(x — y). 

7. Let us understand the integrals to be taken in the 
Lebesgue sense, and the function K(x, y) to be summable, 
with its square, over any two-dimensional region. The 
Volterra relations (10) hold with this assumption except at a 
point set of measure zero, and by giving a complete definition 
of the function K{x, y) they can be made to define a function 
k(x, y) at every point, finite or infinite, as the case may be. 
We have the following theorem: 

THEOREM 1. If, except at the points of a set L {see Section 3) 
of measure zero, the kernel K(x, y) can be written in the form (1), 
in which the functions St" and 6, as functions of a single argument, 
are periodic with period b — a, then with the same exception, 
the resolvent kernel k(x, y) can be written in the same form, 
and has the same properties of periodicity. 

As has already been noticed in Section 6, it is the same 
thing as above to assume that K{x, y) is periodic in each 
argument with period b — a, and the periodicity of k(x, y) 
follows from it. By virtue of the assumption of periodicity 
in regard to K{x, y) the point set L is itself periodic. 

8. In order to prove the theorem let us perform on the 
second of the equations (10) the operations indicated in (5), 
and also the operation obtained from this by interchanging 
t and t'. Let us denote the result of performing these opera­
tions on a function f(x, y) by Hf(t, t'\x, y) and H/(t', t\x, y) 
respectively. In forming the resulting pair of equations we 
have to perform such reductions as the following: 
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ƒ 
•Ja 

kK(x +t + f, £)¥($ + y + t - t')dü 

f 
•Ja-which reduces to 

f 
•Ja 

h(x + t + t',ç-t + 0*(É + vW 

on account of the periodicity.* Hence we obtain finally the 
pair of simultaneous integral equations: 

IIK(t, f\x, y) + Hk(t, t'\x, y) 

+ £Hk{t,t'\x,mi$-y)dt\, 
(12> 

HK(t', t\x, y) + Hk(t', t\x, y) 

= -K^£Hk(t',t\x,OQ^-y)d^ 

+ £Hk{t,t'\x,m{k+y)d$\. 

In this system of equations the kernels are the functions ^f 
and 9, the known functions are the — HK and the solutions 
desired are the functions Hk- It is worth noticing that since 
the kernels are independent of t and t', any of the functions 
belonging to K(x, y) gives rise to a solution of the homogeneous 
system of equations corresponding to (12), and vice versa; 
hence the characteristic values of X in (12) are merely the roots 
of K(x, y). In fact if we write t = t' in (12), the pair of equa­
tions reduce to a single equation of which the kernel is K(x, y). 
The solutions of (12) will then be determined unless X happens 
to be root of K(x, y). 

Since for given values of t and tr the known functions vanish 
except at the points of a set of zero measure (i. e., except when 

* In the treatment by means of the partial differential equation, this 
change of variable corresponds to an integration by parts. 
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one of the seven points (to, y), (x + t, y + t), (x+ t, y — t), 
(x+f, y+f), (x + t,m y-t'), (z+t + t, y+t-t), 
(x + t + t', y — t+ t') lie in L), the solutions will vanish 
except at a point set of zero measure. Moreover from the 
formal character of the solution this set will not contain not-
null sets of points on any line parallel to the X or Y axes. 
Hence the right hand members of (12) will vanish identically, 
and at all points, even at points of L, we shall have the result 

(13) Hk(t, f\x, y) = - HK(t, t'\x, y)9 

which asserts that Hk(t, t'\x, y) and Hk(t', t\x, y) both vanish 
for all values of xf y, t, t' such that none of the seven points 
before mentioned lie in L. Hence, by means of Corollary 4 
in Section 5, k(x, y) will have the form (1), except for points 
of L; and the theorem is proved. 

9. If instead of being defined over the entire plane, the 
kernel K(x, y) is defined only for values of x and y between a 
and b, the theorem may be extended to cover this case. For 
if the kernel is in the form (1), it is defined thereby over the 
interior of the circumscribing rectangle mentioned in Section 5. 
In fact, that is the region of variation for x and y determined 
by the arguments x + y and x — y, on which depend the 
functions ^ and 0. In order to complete the definition of the 
function over the entire plane in the manner best to fit with 
Theorem 1, let us cover the plane by repeating the circum­
scribing rectangle with the attached values of K(x, y), thus 
making K(x, y) periodic in x and y separately with period 
2(6 — a). By means of Theorem 1, then, we have the follow­
ing theorem : 

THEOREM 2. If for values of x and y between a and b the 
kernel K(x, y) can be written in the form (1), in which the func­
tions S£ and 9, as functions of a single argument, are periodic 
with period b —• a, the hypothesis holding except at a point set 
of zero measure, of the form L (see Section 3), then with the same 
exception, the resolvent kernel k(x, y) can be written in the same 
form, and has the same properties of periodicity. 

10. The corresponding theorem is true for functions of the 
form 

(14) K(x, y) = G(x - y). 

In fact, if we make use of the equation 
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(15) K{x + t,y+t)~ K(x, y) = 0, 

we can deduce by means of it, in the same way as before we 
used the relation (5), the following theorem: 

THEOREM 3. Theorems 1 and 2 hold if instead of considering 
kernels of the form (1) we consider kernels of the form (14). 

The corresponding theorem is not true for kernels which 
are functions of x + y alone. In regard to functions of the 
form (14), however, we may go still further, if they are con­
tinuous. 

THEOREM 4. If K{x, y) is in the form (14) and is continuous, 
a necessary and sufficient condition that k(x, y) should be in the 
same form is that 9 , as a function of a single argument, be periodic 
with period b — a. 

I t may be noticed that if the kernel is a function of x alone, 
or is a function of y alone, the resolvent kernel is of the same 
form; but if the kernel is of the form (9), that is, a function of 
x alone plus a function of y alone, the resolvent kernel is not nec­
essarily of the same form. In fact, if fi(x) is the resolvent asso­
ciated with f(x), and gi(y) is the resolvent associated with g(y), 

then the resolvent associated with ƒ (#) + g(y) — I f(£)g(Ç)dl; 
•Ja 

is fi(x) + gi(y) - fi(x)gi(y)(b - a).* 

§ 4. Applications. 

11. On account of the fact that kernels of the form (1) need 
not be continuous, they may often be used as approximations 
for particular kernels which are not themselves in that form. 
The resolvent kernel will then again under the hypothesis of 
Theorem 1 be in the form (1), and the method of development 
in trigonometric functions of period b — a yield immediate 
results. Indeed, functions of the form (1) are determined if 
they are known along a line x + y = C\ and a line x — y — c2; 
a remark which simplifies especially the treatment of the 
integral equation of Volterra type, since it leaves only the 
single function <p to be calculated. The subject of approxi­
mation has not been much studied in connection with integral 
equations. 

* See Section 12 below, also Evans, "L'algebra delle funzioni permu-
tabili e non permutabili," Rendiconti del Circolo Matematico di Palermo, 
vol. 34, p. 7. 
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12. If Ki(x, y) and K2(x, y) are functions of the form (1), 
then it is easily shown by means of (5) that the integral com­
bination 

(16) £Klix' ®K^> y)dli 

is of the same form, provided that the hypothesis of periodicity 
(the period being b — a) holds for the parts SPi, 0 i and ^ 2 , O2 
of Ki and K2. This is the integral combination which has 
been so extensively studied by Volterra. 

Now it is known that if we are given two functions Ki and 
K2 of x and y, and their respective resolvent kernels hi and k2> 

there may be built up out of them by means of the combina­
tion (16) a new kernel and its resolvent; in fact, the function 

(17) fa(x, y) + k2(x, y) - f h(x, ©fett, y)di 

is resolvent for the function 

(18) K2(x, y) + Kx{x, y) - f K2(x, $)£i(É, y)d$* 

We have then the theorem: 
If we have K\(x, y) = ^\{x + y)-\- 0i(# — y) and K2(x, y) 

= ^ 2 ( ^ + y) + 62(3 ~~ y), where \Pi, 0 i and ^f2, 62, as func­
tions of a single argument, are periodic with period b — a, and if 
we denote by k\(x, y) the function resolvent to K\(x, y), and 
by k2(x, y) the function resolvent to K2(x, y), then the functions 
given by (17) and (18) are of the same form, have the same prop­
erties of periodicity, and are themselves mutually resolvent kernels. 

RICE INSTITUTE, 

April, 1916. 

OPERATORS IN VECTOR ANALYSIS. 

BY DR. VINCENT C. POOR. 

I N a note in the April BULLETIN on " Changing surface to 
volume integrals," Professor E. B. Wilson asks why my paper 
in the January BULLETIN was not made shorter by using the 
Gibbs-Wilson notation. While the brevity and suggestiveness 

* See the footnote to Section 10. For purposes of symmetry and con­
venience of statemen we have taken X = 1 and assumed it not to be a 
root of Ki or K2. 


