If, on the other hand,

$$
\begin{aligned}
& \quad\left|A_{n}-A_{n+p}\right|<S_{n} \\
& \left(A_{n}+A_{n+1}+\cdots+A_{n+p}\right)-A_{n} A_{n+1} \cdots A_{n+p} \\
& =\left|A_{n}-A_{n+1}\right|+\left|A_{n}-A_{n+2}\right|+\cdots+\left|A_{n}-A_{n+p}\right| \\
& \\
& <S_{n}+S_{n}+\cdots+S_{n} \\
& <S_{n} .
\end{aligned}
$$

In the limit when p increases indefinitely

$$
\left(A_{n}+A_{n+1}+\cdots\right)-A_{n} A_{n+1} \cdots<S_{n}
$$

The left member is a sequence decreasing with n and it must have the limit 0 for S_{n} has the limit 0 . Consequently the sequence A_{n} has a limit according to Borel.

Rice Institute,
Houston, Texas.

ON THE PRINCIPAL UNITS OF AN ALGEBRAIC DOMAIN $k(\mathfrak{p}, \alpha)$.

BY DR. G. E. WAHLIN.
(Read before the American Mathematical Society, April 10, 1914.)
Introduction.
The following paper is the result of an investigation of a problem connected with the representation of the algebraic numbers in the form $\pi^{a} \omega^{\beta} e^{\gamma}$.*

Throughout the discussion I shall use the following notation. By p I mean a rational prime and by p any prime divisor of p. f is the degree of \mathfrak{p}, i. e., $N(\mathfrak{p})=p^{f}$ and \mathfrak{p}^{σ} is the highest power of \mathfrak{p} contained in p. By π I mean a prime number of the domain $k(\mathfrak{p}, \alpha)$, where α is an arbitrary algebraic number. The numbers of $k(\mathfrak{p}, \alpha)$ are then of the form $a_{\rho} \pi^{\rho}+a_{\rho+1} \pi^{\rho+1}+$ \cdots. A number in which $\rho=0$ and a_{ρ} is relatively prime to p is called a unit and in particular if $a_{\rho}=1$ it is called a principal unit.

[^0]$$
\text { The Equation } x^{p^{n}}-E=0(p)
$$

For the present we shall let E be any unit of $k(\mathfrak{p}, \alpha)$. From the general theory of algebraic numbers* we know that there exists a certain rational integer μ such that the equation

$$
\begin{equation*}
x^{p^{n}}-E=0(\mathfrak{p}) \tag{1}
\end{equation*}
$$

has a solution in $k(\mathfrak{p}, \alpha)$ if the congruence

$$
\begin{equation*}
x^{p^{n}}-E \equiv 0 \bmod \mathfrak{p}^{\mu+1} \tag{2}
\end{equation*}
$$

has a solution in this domain. The present section is devoted to the computation of the value of μ.

This determination of μ can be accomplished by making use of a known theorem. \dagger

Since E is a unit, it follows that any solution E_{1} of (2) is also relatively prime to \mathfrak{p}. Therefore if we put $F(x)=x^{p^{n}}-E$ and denote its i th derivative by $F^{(i)}(x)$ we see that the order of

$$
F^{(i)}\left(E_{1}\right) / i!=\frac{p^{n}\left(p^{n}-1\right) \cdots\left(p^{n}-i+1\right)}{i!} E_{1}^{p^{n}-i}
$$

is the same as the order of $C^{(i)}=p^{n}!/ i!\left(p^{n}-i\right)!$.
The order of m ! in $k(p)$ is $\left(m-S_{m}\right) /(p-1) \ddagger$ where S_{m} is the sum of the coefficients in the reduced p-adic representation of m. Hence since $S_{p^{n}}=1$ we know that in $k(p)$ the order of $C^{(i)}$ is

$$
\frac{p^{n}-1}{p-1}-\frac{i-S_{i}}{p-1}-\frac{p^{n}-i-S_{p^{n-i}}}{p-1}=\frac{S_{i}+S_{p^{n-i}}-1}{p-1}
$$

Let us denote the order of i by ρ and suppose that in its reduced p-adic representation $i=a_{\rho} p^{\rho}+a_{\rho+1} p^{\rho+1}+\ldots$ $+a_{n-1} p^{n-1}$. Since $i \leqq p^{n}$ the representation cannot have a term containing a higher power of p than p^{n-1}, excepting in the case where $i=p^{n}$ and then the order of $C^{(i)}$ is zero. The number p^{n} can be written in the form $p \cdot p^{\rho}+(p-1) p^{\rho+1}$ $+\ldots+(p-1) p^{n-1}$, and hence

$$
\begin{aligned}
& p^{n}-i=\left(p-a_{\rho}\right) p^{\rho}+\left(p-a_{\rho+1}-1\right) p^{\rho+1}+ \\
& \ldots+\left(p-a_{n-1}-1\right) p^{n-1}
\end{aligned}
$$

[^1]which as is easily seen is also in the reduced form. Hence
$$
S_{i}=a_{\rho}+a_{\rho+1}+\ldots+a_{n-1}
$$
and
$$
S_{p^{n-i}}=p-a_{\rho}+p-a_{\rho+1}-1+\ldots+p-a_{n-1}-1
$$
and
$$
S_{i}+S_{p^{n-i}}=(n-\rho) p-(n-\rho-1)
$$
whence we have
$$
\left(S_{i}+S_{p^{n-i}}-1\right) /(p-1)=n-\rho
$$

Since \mathfrak{p}^{σ} is the highest power of \mathfrak{p} in p we see now that $\rho^{(i)}$, the order of $C^{(i)}$ in $k(\mathfrak{p}, \alpha)$, is equal to $\sigma(n-\rho)$.

If we now form the expression $\left(i \rho^{\prime}-\rho^{(i)}\right) /(i-1)^{*}$ we see that this is equal to

$$
\sigma \frac{n i-(n+\rho)}{i-1}=\sigma\left(n+\frac{\rho}{i-1}\right)
$$

since $\rho^{\prime}=n \sigma$. The value of μ sought is the largest integer which is less than or equal to

$$
\max \sigma\left(n+\frac{\rho}{i-1}\right) \text { for } i=2,3, \ldots, p^{n}
$$

Since n and σ are independent of i, it is evident that this maximum occurs when $\rho /(i-1)$ is maximum and we shall therefore determine the value of i for which such is the case.

If we first consider the values of i of a given order ρ it is clear that $\rho /(i-1)$ is maximum when i is minimum and hence when $i=p^{\rho}$ and the maximum value of $\rho /\left(p^{\rho}-1\right)$ as ρ varies over the numbers $1,2, \ldots n$ is therefore the same as the maximum value of $\rho /(i-1)$ as i varies over the numbers $2,3, \ldots p^{n}$. We note here that for $1<i<p, \rho=0$ and $\rho /(i-1)=0$.

Let us now turn our attention to the expression

$$
\psi(\rho)=\rho /\left(p^{\rho}-1\right)
$$

Differentiating, we have

$$
\psi^{\prime}(\rho)=\frac{p^{\rho}-1-\rho p^{\rho} \log p}{\left(p^{\rho}-1\right)^{2}}=\frac{p^{\rho}(1-\rho \log p)-1}{\left(p^{\rho}-1\right)^{2}} .
$$

[^2]If $p>2, \log p>1$ and hence, since $\rho \geqq 1, \psi^{\prime}(\rho)<0$. The function $\psi(\rho)$ is therefore a decreasing function for $\rho \geqq 1$ and the maximum value in the required interval therefore occurs when $\rho=1$. This maximum value is $1 /(p-1)>0$ and since for $1<i<p, \rho /(i-1)=0,1 /(p-1)$ is the maximum value of $\rho /(i-1)$. If $p=2<e<4$, since $e^{1 / 2}<2$ we have $\frac{1}{2}<\log 2<1$ and hence for $\rho \geqq 2$ we have $\rho \log 2>1$ and as before $\psi^{\prime}(\rho)<0$. Therefore for $\rho \geqq 2, \psi(\rho)$ is decreasing and must be maximum, in the given interval, when $\rho=2$. Hence when ρ takes the values $1,2, \ldots, n, \psi(\rho)$ must be maximum either at $\rho=1$ or $\rho=2$.

$$
\begin{aligned}
& \text { For } \rho=1, \psi(\rho)=\frac{1}{2-1}=1 \\
& \text { For } \rho=2, \psi(\rho)=\frac{2}{4-1}=\frac{2}{3}
\end{aligned}
$$

and hence, as in the preceding case, the maximum value occurs when $\rho=1$ and again the maximum is $1 /(p-1)$. Therefore

$$
\max \left(\frac{i \rho^{\prime}-\rho^{(i)}}{i-1}\right)=\sigma\left\{n+\frac{1}{p-1}\right\}
$$

and if we put $k=[\sigma /(p-1)]$ we have

$$
\mu=n \sigma+k
$$

A Certain Residue Group in $k(\mathfrak{p}, \alpha)$.
We shall suppose that the domain $k(\mathfrak{p}, \alpha)$ contains all the p^{r} th roots of unity while no primitive p^{r+1} th root of unity is contained in it. We shall in this discussion need the number μ of the preceding section for the special case when $n=r+1$ and shall therefore put $\mu=r \sigma+\sigma+k \geqq 1+k$.

Every principal unit E of our domain is, modulo $p^{\mu+1}$, congruent to one and only one of the $p^{\mu f}$ units $1+a_{1} \pi+a_{2} \pi^{2}+$ $\cdots+a_{\mu} \pi^{\mu}$ where the a_{i} vary independently over the p^{f} numbers of a complete residual system modulo \mathfrak{p}. Since the product and quotient of two principal units are principal units it is evident that these residues and hence the E 's themselves form an abelian group of order $p^{\mu f}$ with respect to the modulus $p^{\mu+1}$. This group we shall denote by G. Since G is an abelian group we know that it is the product of cyclic groups. These cyclic groups we shall denote by $C_{1}, C_{2}, \cdots C_{h}$, and the order of C_{i} we shall denote by $p^{r_{i}}$. (The order must
be a power of p since it is a divisor of $p^{\mu f}$.) We shall moreover assume that $r_{1} \geqq r_{2} \geqq r_{3} \geqq \cdots \geqq r_{h}$.
Let m be that one of the numbers $1,2, \cdots, h$ such that $r_{m}>r \geqq r_{m+1}$ or if $r_{h}>r, h=m$. We shall first see that r cannot be greater than r_{1}. G cannot contain an element of period greater than $p^{r_{1}}$ and hence if R is a primitive p^{r} th root of unity, it is an element of G and therefore $R^{p^{r_{1}}} \equiv 1 \bmod p^{\mu+1}$ and hence also modulo p^{k+1}, since $\mu \geqq k+1$. But since $R^{p r_{1}} \equiv 1 \bmod p^{k+1}$ it is an exponential unit* and we can therefore write $R^{p^{r_{1}}}=e^{\gamma}(\mathfrak{p})$. By raising both members of this equation to the power $p^{r-r_{1}}$ we have $e^{\gamma r^{r-r_{1}}}=1(p)$ and hence $\gamma p^{r-r_{1}}=0(\mathfrak{p})$ and $\gamma=0(\mathfrak{p})$. But then $R^{p^{r_{1}}}=e^{\gamma}=1(\mathfrak{p})$ and since R is a primitive p^{r} th root of unity this is impossible unless $r \leqq r_{1}$.
In the same way it follows that for $t<r, R^{p^{t}} \equiv 1 \bmod \mathfrak{p}^{\mu+1}$ and hence R and its powers form a cyclic subgroup of G, of order p^{r}.

If $r=r_{1}$ it is evident, from the proof of the theorem, that every abelian group can be written as the product of cyclic subgroups, \dagger that we can put $C_{1}=C$ where C is the cyclic group generated by R. If however $m>1$ we shall next see that no power of R excepting $R^{p^{n}}$ is modulo $p^{\mu+1}$ congruent to a number in the product $C_{1} \cdot C_{2} \cdots C_{m}$.

Let us denote by E_{i} any generator of the cyclic group C_{i} and let us suppose that

$$
\begin{equation*}
E_{1}^{n_{1} p^{\lambda_{1}}} \cdot E_{2} n_{2 p^{2} \lambda_{2}}^{\cdots} E_{m} n_{n_{m} \lambda^{\lambda_{m}}} \equiv R^{n p^{\lambda}} \bmod \mathfrak{p}^{\mu+1} \tag{3}
\end{equation*}
$$

where we assume that $n, n_{1}, n_{2}, \cdots, n_{m}$ are rational integers relatively prime to p and $0 \leqq \lambda<r$ and $0 \leqq \lambda_{i}<r_{i}(i=1,2$, $\cdots m$). By raising both members of (3) to the power $p^{r-\lambda}$ we have

$$
\begin{equation*}
E_{1}^{n_{1} p_{1}^{\lambda_{1}+r-\lambda}} \cdot E_{2}^{n_{2} p^{\lambda_{2}+r-\lambda}} \cdots E_{m}^{n_{m} \lambda_{m} \lambda_{m}+r-\lambda} \equiv 1 \bmod \mathfrak{p}^{\mu+1} \tag{4}
\end{equation*}
$$

and from the fact that G is an abelian group and $C_{1}, C_{2}, \cdots, C_{h}$ the base we know that this is possible when and only when the exponent of each E_{i} is divisible by $p^{r_{i}}$. Hence $\lambda_{i}+r-\lambda$ $\geqq r_{i}$ and since for $i \leqq m, r_{i}>r$, we have $\lambda_{i} \geqq r_{i}-r+\lambda>\lambda$. If we now let $l=\min \left(\lambda_{1}, \lambda_{2}, \cdots \lambda_{m}\right)$ and put

$$
E=E_{1}^{n_{1} p^{\lambda_{1}}-l} \cdot E_{2}^{n_{2} p^{\lambda_{2}-l}} \cdots E_{m}^{n_{m} p^{\lambda_{m}-l}}
$$

[^3]we can write (3) in the form
$$
E^{p l} \equiv R^{n p^{\lambda}} \bmod \mathfrak{p}^{\mu+1}
$$

Since $\lambda_{i}>\lambda$ it follows that $l>\lambda$.
If we now put $t=$ minimum ($l, r+1$) and use the result of the first part of this paper we can from the last congruence conclude that the equation

$$
\begin{equation*}
x^{p^{t}}=R^{n p^{\lambda}}(\mathfrak{p}) \tag{5}
\end{equation*}
$$

has a solution in $k(\mathfrak{p}, \alpha)$. Let us denote this solution by \mathfrak{A}. Then $\mathfrak{2} \mathfrak{p}^{t+r-\lambda}=1(\mathfrak{p})$. Since R is a primitive p^{r} th root of unity and n is relatively prime to p, R^{n} is also a primitive p^{r} th root of unity and hence

$$
\mathfrak{A}^{p^{t+r-\lambda-1}}=\left(R^{n}\right)^{p^{r-1}} \neq 1(\mathfrak{p}) .
$$

\mathfrak{A} is therefore a primitive $p^{t+r-\lambda}$ th root of unity which is contained in $k(\mathfrak{p}, \alpha)$.

But we have seen that $l>\lambda$ and have assumed that $\lambda<r$ and hence $r+1>\lambda$ and consequently $t=\min (r+1, l)>\lambda$ and $t+r-\lambda>r$. But this contradicts our assumption that $k(\mathfrak{p}, \alpha)$ contains no primitive p^{r+1} th root of unity.

Hence (3) is impossible when $\lambda<r$ and hence no power of R excepting $R^{p^{r}}=R^{0}$ or power of $R^{p^{r}}$ can be congruent, modulo $p^{\mu+1}$ to the left hand member of (3).

From this it now follows that in the construction of the base of G we can put $C_{m+1}=C$ and hence have

$$
G=C_{1} \cdot C_{2} \cdots C_{m} \cdot C \cdot C_{m+2} \cdots C_{h}
$$

If we put $G_{1}=C_{1} \cdot C_{2} \cdots C_{m} \cdot C_{m+2} \cdots C_{h}$, this is also an abelian group and

$$
\begin{equation*}
G=G_{1} \cdot C . \tag{6}
\end{equation*}
$$

The result may now be summed up in the following
Theorem: If the domain $k(\mathfrak{p}, \alpha)$ contains a primitive $p^{r} t h$ root of unity but no primitive p^{r+1} th root of unity, and if we denote by μ the number $r \sigma+\sigma+k$ where σ is the exponent of the prime divisor \mathfrak{p} in p and $k=[\sigma /(p-1)]$, then the abelian group consisting of the principal units of $k(\mathfrak{p}, \alpha)$ moduio $\mathfrak{p}^{\mu+1}$ is the product of an abelian group G_{1} and the cyclic group C whose elements are the $p^{r} t h$ roots of unity.

University of Illinois.

[^0]: * Hensel, Crelle's Journal, vol. 145.

[^1]: * Hensel, Theorie der algebraischen Zahlen, Kap. 4, §4. (The method there used by Professor Hensel can be extended to any domain.)
 \dagger Ibid., Kap. 4, § 4, pp. 72-74.
 \ddagger Ibid., p. 111.

[^2]: * Hensel, Theorie der algebraischen Zahlen, Kap. 4, § 4.

[^3]: * Hensel, Crelle's Journal, vol. 145, pp. 94-95.
 \dagger Weber, Algebra, vol. II, pp. 3, 38-45.

