If, on the other hand,

$$|A_n - A_{n+p}| < S_n$$

$$(A_n + A_{n+1} + \dots + A_{n+p}) - A_n A_{n+1} \dots A_{n+p}$$

$$= |A_n - A_{n+1}| + |A_n - A_{n+2}| + \dots + |A_n - A_{n+p}|$$

$$< S_n + S_n + \dots + S_n$$

$$< S_n.$$

In the limit when p increases indefinitely

$$(A_n + A_{n+1} + \cdots) - A_n A_{n+1} \cdots < S_n.$$

The left member is a sequence decreasing with n and it must have the limit 0 for S_n has the limit 0. Consequently the sequence A_n has a limit according to Borel.

RICE INSTITUTE, HOUSTON, TEXAS.

ON THE PRINCIPAL UNITS OF AN ALGEBRAIC DOMAIN $k(\mathfrak{p}, \alpha)$.

BY DR. G. E. WAHLIN.

(Read before the American Mathematical Society, April 10, 1914.)

Introduction.

THE following paper is the result of an investigation of a problem connected with the representation of the algebraic numbers in the form $\pi^a \omega^\beta e^{\gamma}$.*

Throughout the discussion I shall use the following notation. By p I mean a rational prime and by p any prime divisor of p. f is the degree of \mathfrak{p} , i. e., $N(\mathfrak{p}) = p^{f}$ and \mathfrak{p}^{σ} is the highest power of \mathfrak{p} contained in p. By π I mean a prime number of the domain $k(\mathfrak{p}, \alpha)$, where α is an arbitrary algebraic number. The numbers of $k(\mathfrak{p}, \alpha)$ are then of the form $a_{\rho}\pi^{\rho} + a_{\rho+1}\pi^{\rho+1} + a_{\rho+1}\pi^{\rho+1}$ A number in which $\rho = 0$ and a_{ρ} is relatively prime to \mathfrak{p} is called a unit and in particular if $a_{\rho} = 1$ it is called a principal unit.

450

^{*} Hensel, Crelle's Journal, vol. 145.

1917.]

The Equation $x^{p^n} - E = O(\mathfrak{p}).$

For the present we shall let E be any unit of $k(\mathfrak{p}, \alpha)$. From the general theory of algebraic numbers^{*} we know that there exists a certain rational integer μ such that the equation

(1)
$$x^{p^n} - E = 0(\mathfrak{p})$$

has a solution in $k(\mathfrak{p}, \alpha)$ if the congruence

(2)
$$x^{p^n} - E \equiv 0 \mod \mathfrak{p}^{\mu+1}$$

has a solution in this domain. The present section is devoted to the computation of the value of μ .

This determination of μ can be accomplished by making use of a known theorem.[†]

Since E is a unit, it follows that any solution E_1 of (2) is also relatively prime to \mathfrak{p} . Therefore if we put $F(x) = x^{p^n} - E$ and denote its *i*th derivative by $F^{(i)}(x)$ we see that the order of

$$F^{(i)}(E_1)/i! = \frac{p^n(p^n-1)\cdots(p^n-i+1)}{i!} E_1^{p^n-i}$$

is the same as the order of $C^{(i)} = p^n!/i!(p^n - i)!$.

The order of m! in k(p) is $(m - S_m)/(p - 1)$; where S_m is the sum of the coefficients in the reduced *p*-adic representation of m. Hence since $S_{pn} = 1$ we know that in k(p) the order of $C^{(i)}$ is

$$\frac{p^n-1}{p-1} - \frac{i-S_i}{p-1} - \frac{p^n-i-S_{p^n-i}}{p-1} = \frac{S_i+S_{p^n-i}-1}{p-1}.$$

Let us denote the order of i by ρ and suppose that in its reduced p-adic representation $i = a_p p^{\rho} + a_{\rho+1} p^{\rho+1} + \dots + a_{n-1} p^{n-1}$. Since $i \leq p^n$ the representation cannot have a term containing a higher power of p than p^{n-1} , excepting in the case where $i = p^n$ and then the order of $C^{(i)}$ is zero. The number p^n can be written in the form $p \cdot p^{\rho} + (p-1)p^{\rho+1} + \ldots + (p-1)p^{n-1}$, and hence

$$p^{n} - i = (p - a_{\rho})p^{\rho} + (p - a_{\rho+1} - 1)p^{\rho+1} + \dots + (p - a_{n-1} - 1)p^{n-1},$$

^{*} Hensel, Theorie der algebraischen Zahlen, Kap. 4, § 4. (The method there used by Professor Hensel can be extended to any domain.) † Ibid., Kap. 4, § 4, pp. 72–74. ‡ Ibid., p. 111.

[July,

which as is easily seen is also in the reduced form. Hence

$$S_i = a_{\rho} + a_{\rho+1} + \ldots + a_{n-1}$$

and

$$S_{p^{n-i}} = p - a_{\rho} + p - a_{\rho+1} - 1 + \ldots + p - a_{n-1} - 1$$

and

$$S_i + S_{p^n-i} = (n - \rho)p - (n - \rho - 1),$$

whence we have

$$(S_i + S_{p^n - i} - 1)/(p - 1) = n - \rho.$$

Since \mathfrak{p}^{σ} is the highest power of \mathfrak{p} in p we see now that $\rho^{(i)}$, the order of $C^{(i)}$ in $k(\mathfrak{p}, \alpha)$, is equal to $\sigma(n - \rho)$.

If we now form the expression $(i\bar{\rho}' - \rho^{(i)})/(i-1)^*$ we see that this is equal to

$$\sigma \frac{ni - (n + \rho)}{i - 1} = \sigma \left(n + \frac{\rho}{i - 1} \right)$$

since $\rho' = n\sigma$. The value of μ sought is the largest integer which is less than or equal to

$$\max \sigma\left(n+\frac{\rho}{i-1}\right) \text{ for } i=2,3,\ldots,p^n.$$

Since n and σ are independent of i, it is evident that this maximum occurs when $\rho/(i-1)$ is maximum and we shall therefore determine the value of i for which such is the case.

If we first consider the values of *i* of a given order ρ it is clear that $\rho/(i-1)$ is maximum when *i* is minimum and hence when $i = p^{\rho}$ and the maximum value of $\rho/(p^{\rho} - 1)$ as ρ varies over the numbers 1, 2, ... *n* is therefore the same as the maximum value of $\rho/(i-1)$ as *i* varies over the numbers 2, 3, ... p^n . We note here that for $1 < i < p, \rho = 0$ and $\rho/(i-1) = 0$.

Let us now turn our attention to the expression

$$\psi(\rho) = \rho/(p^{\rho} - 1).$$

Differentiating, we have

$$\psi'(\rho) = \frac{p^{\rho} - 1 - \rho p^{\rho} \log p}{(p^{\rho} - 1)^2} = \frac{p^{\rho}(1 - \rho \log p) - 1}{(p^{\rho} - 1)^2}.$$

^{*} Hensel, Theorie der algebraischen Zahlen, Kap. 4, § 4.

If p > 2, log p > 1 and hence, since $\rho \ge 1, \psi'(\rho) < 0$. The function $\psi(\rho)$ is therefore a decreasing function for $\rho \ge 1$ and the maximum value in the required interval therefore occurs when $\rho = 1$. This maximum value is 1/(p-1) > 0 and since for $1 < i < p, \rho/(i-1) = 0, 1/(p-1)$ is the maximum value of $\rho/(i-1)$. If p = 2 < e < 4, since $e^{1/2} < 2$ we have $\frac{1}{2} < \log 2 < 1$ and hence for $\rho \ge 2$ we have $\rho \log 2 > 1$ and as before $\psi'(\rho) < 0$. Therefore for $\rho \ge 2, \psi(\rho)$ is decreasing and must be maximum, in the given interval, when $\rho = 2$. Hence when ρ takes the values $1, 2, \ldots, n, \psi(\rho)$ must be maximum either at $\rho = 1$ or $\rho = 2$.

For
$$\rho = 1$$
, $\psi(\rho) = \frac{1}{2 - 1} = 1$.
For $\rho = 2$, $\psi(\rho) = \frac{2}{4 - 1} = \frac{2}{3}$

and hence, as in the preceding case, the maximum value occurs when $\rho = 1$ and again the maximum is 1/(p-1). Therefore

$$\max\left(\frac{i\rho'-\rho^{(i)}}{i-1}\right) = \sigma\left\{n+\frac{1}{p-1}\right\}$$

and if we put $k = [\sigma/(p-1)]$ we have

$$\mu = n\sigma + k.$$

A Certain Residue Group in $k(\mathfrak{p}, \alpha)$.

We shall suppose that the domain $k(\mathfrak{p}, \alpha)$ contains all the p^r th roots of unity while no primitive p^{r+1} th root of unity is contained in it. We shall in this discussion need the number μ of the preceding section for the special case when n = r + 1 and shall therefore put $\mu = r\sigma + \sigma + k \geq 1 + k$.

Every principal unit E of our domain is, modulo $p^{\mu+1}$, congruent to one and only one of the $p^{\mu f}$ units $1 + a_1\pi + a_2\pi^2 + \cdots + a_{\mu}\pi^{\mu}$ where the a_i vary independently over the p^f numbers of a complete residual system modulo \mathfrak{p} . Since the product and quotient of two principal units are principal units it is evident that these residues and hence the E's themselves form an abelian group of order $p^{\mu f}$ with respect to the modulus $p^{\mu+1}$. This group we shall denote by G. Since Gis an abelian group we know that it is the product of cyclic groups. These cyclic groups we shall denote by $C_1, C_2, \cdots C_h$, and the order of C_i we shall denote by p^{r_i} . (The order must

[July,

be a power of p since it is a divisor of $p^{\mu f}$.) We shall moreover assume that $r_1 \ge r_2 \ge r_3 \ge \cdots \ge r_h$.

Let *m* be that one of the numbers 1, 2, ..., *h* such that $r_m > r \ge r_{m+1}$ or if $r_h > r$, h = m. We shall first see that $r = r_m$ or if $r_h > r$, h = m. We shall first see that $r = r_m$ or if $r_h > r$, h = m. We shall first see that $r = r_m$ or if $r_h > r$, h = m. We shall first see that $r = r_m$ or if $r_h > r$, h = m. We shall first see that $r = r_m$ or if $r_h > r$, h = m. We shall first see that $r = r_m$ or if $r_h > r$, h = m. We shall first see that $r = r_m$ or if $r_h > r$, h = m. We shall first see that $r = r_m$ or if $r_h > r_h > r$, h = m. We shall first see that $r = r_m$ or if $r_h > r_h > r_h$ and hence if R is a primitive p^{r_h} or ot of unity, it is an element of G and therefore $R^{p^{r_1}} \equiv 1 \mod p^{\mu+1}$ and hence also modulo p^{k+1} , since $\mu \ge k + 1$. But since $R^{p^{r_1}} \equiv 1 \mod p^{k+1}$ it is an exponential unit* and we can therefore write $R^{p^{r_1}} = e^{\gamma}(\mathfrak{p})$. By raising both members of this equation to the power p^{r-r_1} we have $e^{\gamma p^{r-r_1}} = 1(\mathfrak{p})$ and hence $\gamma p^{r-r_1} = 0$ (\mathfrak{p}) and $\gamma = 0$ (\mathfrak{p}). But then $R^{p^{r_1}} = e^{\gamma} = 1(\mathfrak{p})$ and since R is a primitive p^r th root of unity this is impossible unless $r \le r_1$. In the same way it follows that for t < r, $R^{p^t} \equiv 1 \mod \mathfrak{p}^{\mu+1}$

In the same way it follows that for t < r, $R^{p^t} \not\equiv 1 \mod \mathfrak{p}^{\mu+1}$ and hence R and its powers form a cyclic subgroup of G, of order p^r .

If $r = r_1$ it is evident, from the proof of the theorem, that every abelian group can be written as the product of cyclic subgroups,† that we can put $C_1 = C$ where C is the cyclic group generated by R. If however m > 1 we shall next see that no power of R excepting R^{p^r} is modulo $p^{\mu+1}$ congruent to a number in the product $C_1 \cdot C_2 \cdots C_m$.

Let us denote by E_i any generator of the cyclic group C_i and let us suppose that

(3)
$$E_1^{n_1p^{\lambda_1}} \cdot E_2^{n_2p^{\lambda_2}} \cdots E_m^{n_mp^{\lambda_m}} \equiv R^{np^{\lambda}} \mod \mathfrak{p}^{\mu+1},$$

where we assume that n, n_1, n_2, \dots, n_m are rational integers relatively prime to p and $0 \leq \lambda < r$ and $0 \leq \lambda_i < r_i$ $(i = 1, 2, \dots, m)$. By raising both members of (3) to the power $p^{r-\lambda}$ we have

(4)
$$E_1^{n_1p^{\lambda_1+r-\lambda}} \cdot E_2^{n_2p^{\lambda_2+r-\lambda}} \cdots E_m^{n_mp^{\lambda_m+r-\lambda}} \equiv 1 \mod \mathfrak{p}^{\mu+1}$$

and from the fact that G is an abelian group and C_1, C_2, \dots, C_h the base we know that this is possible when and only when the exponent of each E_i is divisible by p^{r_i} . Hence $\lambda_i + r - \lambda$ $\geq r_i$ and since for $i \leq m, r_i > r$, we have $\lambda_i \geq r_i - r + \lambda > \lambda$. If we now let $l = \min(\lambda_1, \lambda_2, \dots, \lambda_m)$ and put

$$E = E_1^{n_1 p^{\lambda_1 - l}} \cdot E_2^{n_2 p^{\lambda_2 - l}} \cdots E_m^{n_m p^{\lambda_m - l}}$$

^{*} Hensel, Crelle's Journal, vol. 145, pp. 94-95.

[†] Weber, Algebra, vol. II, pp. 3, 38–45.

UNITS OF AN ALGEBRAIC DOMAIN.

we can write (3) in the form

 $E^{p^{i}} \equiv R^{np^{\lambda}} \bmod \mathfrak{p}^{\mu+1}.$

Since $\lambda_i > \lambda$ it follows that $l > \lambda$.

If we now put $t = \min(l, r + 1)$ and use the result of the first part of this paper we can from the last congruence conclude that the equation

(5)
$$x^{p^t} = R^{np^{\wedge}} (\mathfrak{p})$$

has a solution in $k(\mathfrak{p}, \alpha)$. Let us denote this solution by \mathfrak{A} . Then $\mathfrak{A}^{p^{t+r-\lambda}} = 1(\mathfrak{p})$. Since R is a primitive p^r th root of unity and n is relatively prime to p, R^n is also a primitive p^r th root of unity and hence

$$\mathfrak{A}^{p^{\mathsf{t}+r-\lambda-1}} = (R^n)^{p^{\mathsf{r}-1}} \neq 1(\mathfrak{p}).$$

 \mathfrak{A} is therefore a primitive $p^{t+r-\lambda}$ th root of unity which is contained in $k(\mathfrak{p}, \alpha)$.

But we have seen that $l > \lambda$ and have assumed that $\lambda < r$ and hence $r + 1 > \lambda$ and consequently $t = \min(r + 1, l) > \lambda$ and $t + r - \lambda > r$. But this contradicts our assumption that $k(\mathfrak{p}, \alpha)$ contains no primitive p^{r+1} th root of unity.

Hence (3) is impossible when $\lambda < r$ and hence no power of R excepting $R^{p^r} = R^0$ or power of R^{p^r} can be congruent, modulo $p^{\mu+1}$ to the left hand member of (3).

From this it now follows that in the construction of the base of G we can put $C_{m+1} = C$ and hence have

$$G = C_1 \cdot C_2 \cdots C_m \cdot C \cdot C_{m+2} \cdots C_h.$$

If we put $G_1 = C_1 \cdot C_2 \cdots C_m \cdot C_{m+2} \cdots C_h$, this is also an abelian group and

$$G = G_1 \cdot C.$$

The result may now be summed up in the following

THEOREM: If the domain $k(\mathfrak{p}, \alpha)$ contains a primitive p^{r} th root of unity but no primitive p^{r+1} th root of unity, and if we denote by μ the number $r\sigma + \sigma + k$ where σ is the exponent of the prime divisor \mathfrak{p} in p and $k = [\sigma/(p-1)]$, then the abelian group consisting of the principal units of $k(\mathfrak{p}, \alpha)$ modulo $\mathfrak{p}^{\mu+1}$ is the product of an abelian group G_1 and the cyclic group C whose elements are the p^{r} th roots of unity.

UNIVERSITY OF ILLINOIS.

1917.]