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analytic in (x0, yo, z<y) and n and r2 are not both zero there* 
These solutions of (3) are, then, analytic except perhaps in 
points of singularity of c\, c2 and in points for which ri = r2 = 0. 
But they are identical with certain solutions of the equations 
(2), solved for dh/dy, dfa/dy,—solutions which are analytic 
except perhaps in points of singularity of c\, c2 and in points 
for which qi = q2 = 0. Evidently, then, these solutions fa, fa, 
and hence the vectors 71 = faci + fac2, y2 = faci — fac2, are 
analytic except perhaps in points of singularity of C\, c2 and in 
points in which both c% and c2 are indeterminate, that is, have 
all three components zero. Thus we have the theorem: 

If the gradients ch c2 of the functions Fx, F2 in F = Fi + iF2, 
where Fi = Fi\ [L] | , F2 = F2 \ [L] \ are functions of the first 
degree of the space curve L, are in general analytic, the gradients 
7b T2 of $1, $2 in <ï> = $1 + i$2, an arbitrary complex function 
of L of the first degree isogenous to F, are analytic save perhaps 
in points of singularity of ci or c2 and points in which both 
these vectors are indeterminate. 

The theorem still holds when the vectors C\, c2 are pro­
portional. In this case fa and fa are both solutions of the 
equation 

v
dl+Q

dl+r
dl=0 ( i= i 2) p%dx+ qidy^Tldz U ' U > h 

to which both of the equations (3) reduce in form, and 71 and 
72 are both proportional to c\ and c2. 
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W E shall derive by means of elementary considerations the 
equation of the probability curve from the sequence of binomial 
coefficients. If the asymptotic form of x\ be obtained, the 
problem is very simple but none the less merits attention. 
The asymptotic form of n\, viz., ^n^n/e) V / ( 1 2 w ) , 0 < 6 < 1, 
might of course be taken for granted, but so far as is known 
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to the writer, no purely algebraic attempt to prove Stirling's 
formula has been successful. The proof here given does use 
ratios of factorial expressions but proves the asymptotic 
values of these directly. The original derivation by Gauss 
is elegant and elementary but does not attempt to show the 
relation of probability in the finite cases to the transcendental 
probability function ce~h2x2 nor does that derivation appear 
to adapt itself to any modification which will render obvious 
the fact that the infinite case is but a limit obtained from the 
finite case. 

It is true that the method here described makes use of the 
convergence and the value approached of a single infinite 
product, viz., Wallis's formula for T/2, 

7T = 2 2 4 4 6 6 8 8 
2 " " l ' « ' 3* 5 ' 5* 7* 7* 9 ' " ' 

but this infinite product is a familiar one and is discussed in 
nearly every textbook treatment of infinite products. 

Let a succession of adjacent rectangles Rk with altitudes, 

( 2m \ 
I T . ) a™> a n d common length of base, 6m, be erected on 

a straight line. The total area of these rectangles for a given 
m, with h ranging, is, by the binomial theorem, 22mam6m. If 
am and bm be so varied with m that the middle rectangle JRO 
remains of finite height and the area remains finite, then the 
rectangles form approximations to the probability curve. For 

(2m\ 
the mid-ordinate ( ) am to be finite, am must be asymptot-

t2m\ 
ically proportional to the reciprocal of the middle term ( ). 

We seek therefore the asymptotic form of the middle term Mm. 
Let Cm = milfm

2/16w; then C^i/Cm = (2m + l)2/2m(2m + 2). 
Now C\ = | , hence, in general, for m > 1, 

= i r ~ ^ ? £ ^ (2m - l)2 1 
Cm 2 |_2 ' 2 ' 4 ' 4 ' 6 ' " (2m - 2)2m J ' 

Hence Mm ~~ 4m/ Vm7r, and apart from an arbitrary constant 
factor, am ~ Vm7r/4m. Since the area 22mambm is also to be 
finite, we have, except for an arbitrary constant factor, 
bm ~ 1/ Vm. 
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If a definite point x be chosen upon the base line, this point 
will fall within the rectangle numbered k only if kbm does 
not differ from x by as much as bm\ the k denoting a fixedj» 
must therefore vary with m, and we have x ~ kbm, or k ~ x Vm. 

The asymptotic ratio of the general term ( , , to the 

middle term ( J may be written in the form 

/ 2m \ / / 2 m \ 1 
\m + k)l\mj- , , i + i -

m m — 1 

m 

> 
( 2m \ / / 2 m \ 
\m + k)I \ m ) > 

1 + 

1 

k 
m — k-\r 1 

l + ; 
h ,m + k. 

I I —I— 

m — jfe + 1. 

Replacing m partially in accordance with k ~ x Vm, we have 

(—±—Y>( 2m )!(2m)>( * Y 
\l + a*/kj ^\m+kj/\ m )^\l + x2l(k-x2 + x2lk)) 
Using the fact that the reciprocal of the middle term is asymp­
totically equal to the altitude factor am, we obtain by passing 
to the limit for m and hence also for k the asymptotic form of 
the height of the rectangle covering or touching the point x, 
viz., y(x) = e~*2. 

We have thus obtained the equation y = ë~*2 as the limit 
of the altitude of a rectangle contained in a sequence erected 
proportional to the binomial coefficients, and by different 
units of proportionality we would have obtained the form 
y{x) = ce~~h2x2, geometrically no more general. We have inci-

e~x*dx = lim 4mam6m = \7r, 
oo 

directly, without recourse to such devices as polar integration 
of a double integral. Even the binomial theorem may be 
interpreted in the limit, giving 

f(x V2) = VTT72 r*f(x + t)f(x - t)dt, 
J—oo 

where ƒ(t) is e~x\ 
This treatment is believed to be original, but the literature 

available for examination by the author is that customary to 
an army post, "somewhere on the Gulf of Mexico/'—nil. 


