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I T will doubtless be recalled by all here present that the 
first volume of the encyclopedia of mathematics, as originally 
published in German, was issued in hefts, or parts, each pre
pared by a special collaborator well qualified for his task. 
The completion of the volume occupied a period of about six 
years and resulted in a finished work of no less than 1,128 
pages. This was followed some years later by the second 
volume, which was still larger, containing in all its parts 1,154 
pages. The two volumes taken together were intended to 
cover the entire range of pure mathematical analysis (as dis
tinguished from geometry, mechanics, and other applications), 
each important branch being treated in its essentials and the 
amount of space allotted to any one topic being proportionate, 
at least roughly, to its relative importance. Out of the grand 
total of 2,282 pages thus presented it may now be remarked 
that a little less than 7 pages were devoted to that particular 
topic specified as "divergent series." Thus we have a ratio 
of 7 to 2,282, or about three tenths of one per cent, which 
may fairly be taken as the measure of interest in this topic at 
the time when the encyclopedia began to appear; that is, in 
the neighborhood of twenty years ago. The 7 pages in ques
tion, as we come to examine them, seem directed mainly to 
showing by means of simple illustrations that the processes 
by which Euler arrived at certain noteworthy results while 

* Address of the retiring chairman of the Chicago Section of the Ameri
can Mathematical Society, read at the joint meeting of the Section and of 
the Mathematical Association of America at Chicago, December 28, 1917. 
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dealing with divergent series are in themselves altogether un
justified and unscientific, the correctness of his results being 
in the nature of a happy circumstance arising out of the in
herent character of the particular series he happened to be 
dealing with. On the whole, the short article conveys a 
rather gloomy outlook for this entire field of study, especially 
as regards any attempts that may be made to put it upon a 
truly scientific basis. Without digressing further upon the 
attitude of the encyclopedia, I take for granted that to-day we 
are all quite willing to agree that, contrary to any predictions 
that may have been made in the past, divergent series have 
now come to occupy a prominent place in analysis and one 
that bids fair to be permanent. How, it may be asked, has 
this happened? What has been done during these twenty 
years that really constitutes a vital advance in this field of 
study? Can we say that divergent series are at last upon a 
scientific basis? These are fair questions and it is to them 
that I would respectfully direct your attention for a few 
moments this afternoon. In answering, I shall attempt no 
more than an outline or conspectus of the situation as I myself 
have come to regard it and in this I am conscious beforehand 
that my own feelings, at least at some points, may not be 
universally acceptable; yet I shall venture all with equal 
candor. I shall not attempt to detail a large body of more or 
less intricate theorems and results, but I shall endeavor in a 
general way to show what seems central to me both as to the 
logical position of the present day theory and its applications. 

In the first place, if I may refer again to Euler, we should of 
course recognize clearly at the outset that in his day the class 
of series which we now call divergent had not been clearly 
separated off by itself and in this sense it really had no well-
defined meaning. It is true that certain individuals of the 
class had been studied more or less extensively and in w^ys 
which we are now bound to regard as interesting because of 
their curiosity, as for example the assignment of the sum | to 
the oscillating divergent series 

1 - 1 + 1 - 1 + 1 - 1 + 

but divergent series as a class had not been carefully defined. 
Not until the time of Cauchy and Abel did they take on an 
exact sense and it was then through a purely negative process. 
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In fact, they were then defined, as they still are to-day, as 
being all those series which do not satisfy the particular defini
tion for convergent series which was formulated by these two 
great mathematicians. On this plan, convergence means 
nothing more or less than that the sum of the first n terms 
approaches a limit as n increases indefinitely, while divergence 
means simply that this particular limit does not exist. How
ever natural this sort of a classification of series may seem to us, 
owing to our having been born and brought up with it, we 
must recognize that it involves after all a large element of 
arbitrariness. In fact, the only reason why the fundamental 
distinction between series should be made to hinge upon the 
existence of this particular limit lies in the fact that those 
series for which it exists are an admittedly important class. 
Of course there is no adequate reason in this to account for 
the way in which the excluded or divergent class were so long 
held in utter disrepute by the successors of Abel and Cauchy 
and continue still to repel us, except it be the psychological 
fact that whatever is excluded from a certain good class we 
instinctively think of as forming a bad class. However, to 
banish a whole class of series from analysis simply because it 
does not bear the stamp of a certain branded variety may easily 
be and is too hasty and rough a handling of their case. It 
makes no allowance for the different degrees of respectability 
which, though divergent, they may still possess. Thus it is, 
in substance, that the modern studies on divergent series may 
be said to have arisen. They are a reaction against the under
lying arbitrariness of the Abel-Cauchy distinction and the 
ruthless and unjustified exclusions which this particular dis
tinction has tended to produce. If we inquire just what the 
avenue of approach has been to this subject, it may be said 
that the first tangible result was the creation of the so-called 
"sum formulas," the essential feature of any such formula 
being that it shall not only serve, in case it can be evaluated, 
to give us the sum of any convergent series, but it shall con
tinue to preserve a meaning when applied in the same way to 
certain divergent series, thus associating, or assigning, definite 
numerical values or sums to them also. The spirit of this 
procedure is, of course, nothing more or less than that com
mon to all extensions of idea in mathematics. Just as in the 
theory of functions of a complex variable the sine of x, or any 
other function such as there considered, comes to have a 
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meaning for complex values of x only by virtue of a certain 
definitional formula so constructed as to give results when x 
is real that are in accord with the known properties of the sine 
in the real domain, so in the modern studies on divergent series 
sums are assigned to such series only by virtue of sum for
mulas so constructed as to yield results when applied to con
vergent series that are in accord with the known facts regard
ing such series. I have purposely mentioned this particular 
illustration because by carrying it one step farther, as I shall 
now do, I shall be able to bring out another feature of the 
present day situation as regards divergent series, and this 
time we shall discover that the theory is by no means in a 
perfectly satisfactory logical state as yet, being in this respect 
quite different from any well established body of doctrine 
such as the theory of functions of a complex variable. In fact, 
it will be recalled that it is a vital feature of the complex vari
able theory that no two different definitions for any one given 
function, as sin x, are possible. In other words, it is demon
strable that if any two definitions for the function agree 
throughout the real domain, they will necessarily agree also 
throughout the complex domain. This property of unique
ness, if we may so designate it, is brought about by imposing 
a fundamental limitation at the very outset of the theory, 
namely, that only those functions shall be retained which 
belong to the class known as monogenic, or analytic. Thus, 
the logical coherence of the complex variable theory is bought 
at the price of a far reaching initial restriction, yet one which, 
as we know, is not so serious but what we are left with a class 
of functions of great interest in themselves and in their appli
cations. In the theory of divergent series, on the other hand, 
as it exists today we are in possession of a large number of 
sum formulas each applicable in the sense before described to 
a divergent series and all agreeing with each other so far as 
convergent series are concerned, but not agreeing in general 
in the sums they prescribe to a given divergent series. In a 
word, the situation is analogous to that which the theory of 
functions would present in case the fundamental limitation as 
to the character of the functions considered were to be removed. 
How, you will at once inquire, can there be any general theory 
worthy of the name on such a loose plan as this? Strictly 
speaking, there cannot. However, all that is lacking in order 
that we have a bona fide theory is that we come to some agree-
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ment, as in the theory of functions of a complex variable, as to 
what is proper by way of initial limitations, either upon the 
kind of divergent series to be considered or upon the kind of 
sum formulas we shall employ in connection with them. Have 
we any good indications as to what such limitations may well 
be? Yes, but none that are universally accepted as yet. As 
to what the line of approach to this matter may properly be 
I shall have more to say eventually, but for the moment I deem 
it more proper that I attempt to answer another question 
which no doubt by this time has arisen in your own minds. 
How can it be that divergent series have come into prominence 
in the face of such conditions as I have just described, whereby 
there does not exist even to this day a strictly coherent and 
universally acceptable general theory of the subject? This 
is a very proper question, whose answer is twofold. 

First, the various sum formulas, regardless of their interre
lations and other such logical aspects, have been found to yield 
interesting information when applied to certain important 
special series, such as Fourier's series, Dirichlet's series, etc. 
For example, even though the Fourier series representing a 
given function f(x) may be divergent at a certain point, still 
the series may be summable there by one or more formulas and 
the sum thus obtained may and usually does continue to serve 
fully as useful a purpose from the standpoint of mathematical 
physics or other applications as does the sum when the same 
series is convergent; that is, the sum in the extended sense 
furnishes the answer to the proposed physical problem. 
Extensive investigations have been carried out in this con
nection to determine sufficient conditions under which a 
Fourier series will be summable, analogous to the well-
known conditions for its convergence, and similarly the prob
lem has been carefully worked over for some of the other re
lated developments such as those for an arbitrary function in 
terms of Bessel functions, or Legendre functions. In this 
connection it may be of interest to observe the central fact 
that whereas the Fourier series for f(x) converges in general to 
the value 

f(x-0)+f(x + 0) 
2 

only in case ƒ (a;) is of limited total fluctuation in the neighbor
hood of the point x under consideration, the same series will 
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be summable by the simplest of the well known sum formulas 
of Cesàro to this same value provided only that the right and 
left limits, namely f(x + 0) and f(x — 0), exist. Here we 
incidentally meet with an illustration of the manner in which 
summability includes convergence as a special case, since the 
latter set of conditions is evidently much less restrictive than 
those just mentioned for convergence. And it may be added 
that, so far as the Bessel expansions are concerned, much the 
same situation prevails as with Fourier series, but the case of 
the Legendre expansions is essentially different and all the 
more interesting because of its novelty. Here no new results 
follow so long as one uses the simplest of the Cesàro formulas; 
that is, so long as one uses the formula of order 1 these develop
ments are summable under no less restrictive conditions than 
would insure convergence itself. But by using the same 
formula of order 2, or 1 higher, various new and interesting 
results follow. The manner in which the summable proper
ties of the Legendre developments thus lie intermediate be
tween the range of the formulas of orders 1 and 2 has led, it 
may be added, to a generalization of the whole conception 
of the formula to include fractional or even incommensurable 
orders of summation. Out of such a generalization there arise 
interesting special studies analogous to what we find in the 
ordinary elementary study of series. Thus, just as we know 
that in the case of the series 

convergence merges into divergence as p passes through the 
value 1 from above, so we are able to determine for divergent 
series just where the critical order, or orders, are at which new 
information begins to be realized. Furthermore, the extended 
study of sum formulas simply upon their own merits, that is, 
without stressing their logical interrelations, has led very 
naturally to the notion of uniform summability corresponding 
to that of the uniform convergence of a series. And again, 
alongside of the same studies, corresponding studies have 
naturally arisen for divergent integrals. Here as before the 
underlying idea is that of setting up a formula which shall give 
the value of all convergent improper integrals and at the same 
time preserve a meaning and thus assign a value to some inte
grals that are divergent. As the formulas pertaining to such 
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studies are not as familiar as those for series, it may be proper 
to note that if the type integral be taken as 

/= r/w, 
then the formula analogous to the Cesàro formula of order 1 
and giving the value of I even in some cases of divergence is 

I = lim; f da f/(|8)#, 

this formula having been first obtained, I believe, by Professor 
C. N. Moore in his thesis. I t is equivalent to the somewhat 
simpler form 

7=lim f /G8)( l -£W 
«=00 da \ ^ / 

I shall not attempt any further details concerning sum for
mulas and the facts derivable either directly or by suggestion 
from them. We can certainly say, however, that this class of 
studies, as carried out independently for the various formulas, 
has greatly increased the range of interest in series in general 
and has enabled us to see convergent series in particular from 
new and very instructive points of view. 

The second reason alluded to above for the prevalent in
terest in divergent series despite the lack as yet of any uni
versally accepted general theory about them brings us to a 
certain very important aspect of the whole which we have not 
as yet mentioned—an aspect, it may be added, which was 
entirely disposed of in 11 lines of the encyclopedia article 
mentioned at the beginning. We refer to what is known as 
"asymptotic series." This is in reality the oldest aspect 
which our subject presents. I t may be said to have originated 
in an isolated note by Cauchy in 1843 relating to the well-
known series of Stirling 

log Y(x) = | log 2TT + (x — | ) log x — x 

(!) JLALAI. AI^ 
+ l - 2 * 3-4z 3 + 5-6z5 

(Bm == rath Bernoulli number). 

Cauchy pointed out that this series, though divergent for all 
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values of x, may be used in computing log T(x) when x is large 
(and positive). In fact, he showed that, having fixed the 
number n of terms taken, the absolute error committed by 
stopping the summation at the nth. term is less than the abso
lute value of the next succeeding term, and hence becomes 
arbitrarily small (n > 3) as x increases indefinitely. Cauehy's 
work on divergent series was confined, however, to the single 
series (1) and, owing to the overemphasis placed upon con
vergent processes by the successors of Cauchy and Abel, as 
mentioned earlier, no further progress was made in this field 
until the subject at last reappeared after more than forty 
years in connection with the researches of Poincaré upon the 
irregular solutions of linear differential equations. Poincaré 
considered those divergent series (normal series) of the form 

ef^xp(A0 + Ax\x + A2/x
2 + • • • ) ; 

(2) 
f(x) — a polynomial in x, p = a constant, 

which for some time had been known to satisfy formally 
homogeneous linear differential equations of certain types 
having the point x = oo as a so-called "irregular point," and 
he showed essentially that in general to every such formal 
solution there corresponds an actual solution which can be 
represented by (2) in much the same sense as (1) was described 
above as representing log T(x). In view of the important 
significance of such results both from the standpoint of the 
possible use of divergent series and from that of the theory of 
differential equations, Poincaré set apart and discussed in 
some detail a broad class of divergent series of the special 
form (2), applying to them the name of " asymptotic series." 
Poincaré's results, however, in so far as they concerned dif
ferential equations, were noticeably incomplete, being limited 
by certain unfortunate restrictions, and thus his original 
studies have given rise in later years to numerous researches 
in which noteworthy advances have been made, though open 
questions in this connection still remain. Corresponding inves
tigations, likewise begun by Poincaré, pertaining to linear dif
ference equations have also been undertaken in recent years and 
carried to an advanced stage. Meanwhile another important 
aspect of the theory of asymptotic series has come into view; 
namely, that of actually determining the asymptotic develop
ments of any given function—a problem of decided interest 
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for the study and classification of functions in general. I can 
perhaps employ the next few moments to no greater advantage 
than in sketching somewhat more completely these various 
fundamental problems relative to asymptotic series, pointing 
out incidentally certain unsolved special problems of note
worthy interest. 

Referring again to differential equations, the studies in 
question may be said to center about the linear homogeneous 
differential equation 

(3) y(n) + (h(x)y^» + a 2 0% ( n - 2 ) + • • • + an(x)y = 0, 

wherein the coefficients a\(x), a2(V), • •-, an(x) are, in the 
simplest case, rational functions of x and, in the more extended 
case, are supposed to be developable in series of the form 

(4) a ^ ) = ^ [ a r , 0 + ^ - 1 + ~ + - - - ] (r = l , 2 , . - . , n ) , 

h being zero or a positive integer. In such a differential equa
tion the point x = oo is in general an irregular point, so that 
the usual normal solutions are divergent series of the form (2). 
With reference to these solutions, we may now cite the follow
ing fundamental theorem : 

" If for the equation (3) the roots mi, ra2, ra3, • • •, mn of 
the so-called characteristic equation, i. e., of the algebraic 
equation 

(5) mn + ai, om""1 + a2,0m
n~2 + h an, 0 = 0, 

are distinct, equation (3) possesses n linearly independent 
solutions i/i, y2, ys, . . . , yn which, for large values of x, are 
developable asymptotically in the form (2), wherein ƒ(x) is of 
degree k + 1, and ao = 1; that is, we have 

(6) î , r ~ < / ^ [ l + ^ + ^ + . . . ] (r=l,2,3,---,n), 

where fr(x) is a polynomial of degree h + 1 in x, while pr is a 
constant." 

If in this theorem the restriction be removed that the roots 
of the characteristic equation be distinct; that is, if multiple 
roots are present, the theorem fails and we at once encounter a 
problem for which no general solution has yet been obtained. 
Moreover, the theorem as just stated carries with it the assump-
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tion that x is real. When x is regarded as complex, much the 
same results follow, the forms (6) holding now over certain 
sectors of the plane emanating from the origin, but here again 
much remains to be investigated, the existing theorems cover
ing only what may be described as the simplest cases. 

Contrasted with the same theorem for differential equations, 
is the corresponding fundamental theorem for linear difference 
equations : 

" Given a homogeneous linear difference equation of the 
nth. order, which we may write in the form 

,„ V(x + h) + ax{x)y{x + h - 1) + (h(x)y(x + h - 2) 
(7) 

+ h an(x)y(x) = 0, 
and let it be assumed that the coefficients %, 02, • • •, an are 
either rational functions of x or are developable in series of 
the form (4). Then, if the roots mb m^, •••, mn of the 
characteristic equation (5) are distinct and no one of them 
equal to zero, equation (7) possesses n linearly independent 
solutions 2/1, y2, • • •, yn valid for large positive values of x 
and developable asymptotically in the forms 

yr~[T(x + DYmW [ l + ^ + ^ H ] 

(r = 1,2,3, . . . , n ) . 

In case the characteristic equation presents multiple roots, 
or a zero root, no corresponding results appear to have been 
obtained, at least in general, though this whole subject has 
been interestingly discussed from an altogether different point 
of view and in a considerably larger measure of completeness 
by the introduction throughout of the so-called faculty series 
instead of the usual power series forms. Here again much 
remains to be done for the case of a complex variable, though a 
beginning corresponding to that cited above for differential 
equations has been made. The importance of these studies, 
both as regards differential and difference equations, lies, of 
course, in the fact that it is equations of these particular types 
that play a most fundamental rôle in analysis, both from the 
function theoretic standpoint and from that of applications. 
We shall not enter, however, into further details in this direc
tion more than to mention the fact that corresponding studies 
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for non-homogeneous differential and difference equations 
have been considered but, like the homogeneous cases, are in 
but a limited state of completion. 

As regards the problem of determining the asymptotic 
developments of a given function, which I also mentioned a 
moment ago, the meaning of this class of studies may perhaps 
be best understood from one or two simple illustrations. 
Let us take, for example, the following power series in which 
x is regarded as taking^ complex as well as real values: 

^ xn 

(9) f(x) = 22 ; P = any non-integral constant. 
%=oP W 

The radius of convergence of this series is easily seen to be 1, 
so that the series itself yields no information as to the nature 
of the function ƒ(x) defined by it in the more distant portions 
of the plane. In order to secure such information and thus 
he able to follow the course of the function for values of x of 
large modulus it becomes necessary to develop f(x) in some 
manner about the point infinity, as for example in power series 
in 1/x, but the simple knowledge of the formula for the nth 
term of the given series (9) provides no immediate way of 
determining the coefficients of such a development. When 
once obtained, moreover, it may either converge or it may 
represent f(x) only asymptotically. How actually to deter
mine the development, whatever be its ultimate character, 
is the problem, and in the case before jis it may be stated that 
it becomes 

nx) ~ sin TTp (p + l ) s (p + 2)x "' 

this form holding at least so long as we confine ourselves to any 
sector of the plane which does not contain the positive half of 
the real axis. More generally, it may be shown that if we have 
any power series 

00 

Hg(n)xn, 

wherein the coefficient g(ri) may be regarded as a function of a 
complex variable n and as such is analytic throughout the 
entire n plane except for a finite number p of poles, and at the 
same time, when considered for values of n of sufficiently large 
modulus, remains less than a constant, then the function f(x) 
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defined by this series will be developable in general throughout 
the distant portions of the plane either asymptotically or in a 
convergent series of the specific form 

J W L-j 'm o ™ 3 f 
77̂  = 1 *^ *v *^ 

where rTO represents the residue ot the tunction : 
sin 7m 

at the rth pole of g(ri). Corresponding results for various 
other type forms of power series have likewise been obtained, 
and again, similar studies have been extensively carried out 
for functions defined not by power series, but by altogether 
different though very important forms, such as infinite prod
ucts, or faculty series. Sufficient has been said, I judge, on 
this aspect of asymptotic series so that you will perceive its 
bearing not only upon the determination of the values of a 
function in distant regions but also upon the broader problem 
of the classification of functions in general, since functions may 
clearly be distinguished from one another in classes corre
sponding to the different characters of their asymptotic de
velopments. Very much remains to be done in this entire 
field of investigation. 

What we have thus far said may be briefly summarized in 
the statement that the modern theory of divergent series 
contains essentially two branches, the first concerning the 
question as to how a sum may be assigned to a divergent 
series in general, and the second pertaining merely to the 
functional properties of that important special class of diver
gent power series known as asymptotic series. Of these two 
branches, the second, though characterized by theorems and 
results which usually bear a high degree of complexity, presents 
no logical inconsistencies and is thus in quite as satisfactory a 
state as convergent series themselves, while the first, or prob
lem of summation, when considered as a whole is still in an 
unsatisfactory logical state because, as pointed out earlier, 
we have a large variety of sum formulas which, though agree
ing with one another when applied to convergent series, fail 
to do so to a greater or less degree when applied to divergent 
series. However, all that remains in order to bring about 
perfect agreement everywhere is, as was also stated earlier, 
that we place proper limitations either upon the kind of diver-
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gent series to be considered, or upon the kind of sum formulas 
to be retained, or both. In the time that remains to me I may 
therefore return for a few moments to the question as to how a 
logically consistent general theory of summation, if there is to 
be one, may well be constructed. I t may be that the limita
tions which I am about to place may seem too restrictive to 
some, yet I take for granted that everyone shares with me the 
instinctive feeling that there should be a logically sound and 
fairly useful general theory of some sort and it is mainly in that 
spirit that my suggestions will be made. 

In approaching the question let us first cast a glance back 
over the historical genesis of all the various sum formulas, for 
this is at once suggestive. The earliest and simplest of them is 
the one growing out of certain studies of Frobenius in 1880 
relative to the behavior of the power series 

00 

(io) Z v " 

for values of x upon its circle of convergence. His theorem in 
substance was as follows: "Suppose that the radius of con
vergence of (10) is 1, and let sn = a0 + ai + a2 + • • • + an. 
Then, we shall have 

(11) lim Yl,anx
n = lim j—.: 

x=l—0 n=0 w=oo U -f- I 

whenever the limit on the right exists/' This is a straight
forward result in the theory of functions having at first sight 
no relation to divergent series, nor indeed did it come to play 
any recognized part in the development of the latter for a 
considerable time. When it did it was because the left mem
ber of (11) is known to be identical with 

00 

(12) E «» 
n=0 

whenever this series is convergent, so it seemed natural in case 
it was divergent to continue assigning sums s to it in accordance 
with the formula 

{13) ' = ££ ^n 
so long as the limit on the right exists. This particular for-
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mula for s found additional justification in the fact that the 
value it assigns to (12) when divergent is useful in the sense 
that it is the value of the f unction ƒ (a;) defined by (10) at the 
point x = 1; that is, formula (13) furnishes the analytic con
tinuation of the power series (10) at the point x = 1 upon its 
circle of convergence. It was essentially in this same spirit 
of useful as well as possible extension of idea that the sum 
formulas of Cesàro and Holder, both of which contain (13) 
as a special case, were set up, as likewise the later transcen
dental sum formula of Borel wherein a definite integral is 
involved. These considerations immediately suggest that a 
logically coherent and at the same time useful theory of sum-
mability may be established by limiting ourselves throughout 
to those series (12) for which the corresponding power series-
(10) has a non-vanishing radius of convergence and further
more limiting our use of sum formulas to those which, like 
the familiar ones of Cesàro and Borel, assign to a divergent 
series (12) a sum s which is equal to the value of the analytic 
continuation of this same power series (10) at the point x = L 
Such a value for s allows of no duplicity and is therefore unique, 
thus removing the primary logical defect heretofore mentioned 
in the present day aspect of the theory. Moreover, a theory 
thus limited in scope at once satisfies our desideratum of being 
useful, for it attaches itself in a most fruitful way to the very 
important subject of analytic continuation in the theory of 
functions of a complex variable. For example, it may be 
shown that in general any divergent power series is summable 
by Cesàro's formula at points upon its circle of convergence, 
thus furnishing the analytic continuation of the corresponding 
function at such points, but that it is not summable by this 
formula at points outside the same circle. On the other hand, 
if Borel's integral formula be used on the same series, it gives 
a sum and hence the analytic continuation not only for points 
upon the circle of convergence, but in certain regions lying 
outside this circle; namely, within the so-called polygon of 
summability formed by tangents to the circle at those points 
which are singular points of the function defined by the corre
sponding power series. Moreover, in a theory as thus restricted 
the usual rules for the manipulation and combination of con
vergent series are in large measure preserved. In short, we 
have left, it seems to me, a sufficient body of doctrine to be 
worthy of the name "general theory of summation." 
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I trust that I have now made clear my own feelings regarding 
the three questions raised at the outset; first, as to why diver
gent series have come into such prominence since the appear
ance of the early volumes of the encyclopedia, second, what 
has been done that really constitutes a vital advance and third, 
as to whether such series are at last upon a truly scientific 
basis. My only fear is that in attempting to couch the whole 
in very simple form I may have gone too far in this direction 
and thus violated a principle which, I believe it is said, the 
poet Browning always carefully observed; namely, of never 
using so simple a style that the intelligence of one's readers or 
hearers may be offended. But this is a rather treacherous 
principle, as most people discover in attempting to read 
Browning, so I may perhaps be pardoned if I have seemed to 
depart too far from it. 

SOLUTIONS OF DIFFERENTIAL EQUATIONS AS 
FUNCTIONS OF THE CONSTANTS OF 

INTEGRATION. 

BY PROFESSOR GILBERT AMES BLISS . 

(Read before the American Mathematical Society December 29, 1917.) 

T H E purpose of this note is to prove the differentiability of 
the solutions of a system of differential equations with respect 
to the constants of integration by a method which seems more 
natural and simpler than those which have hitherto been pub
lished. Incidentally a restatement of the so-called " imbedding 
theorem" for differential equations is given, a theorem which is 
frequently applied in the calculus of variations, and which 
has been useful, and could be made still more so, in many other 
connections. I t is analogous to the fundamental theorem for 
implicit functions in its statement that a solution of a system 
of differential equations given in advance is always a member 
of a continuous family of such solutions. 

Let C be an arc 

(C) x =K u(r), n ^ T ^ r2, 


