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index 8 whenever n > 4, and that the corresponding quotient 
group is the octic group. Hence K involves exactly three sub­
groups of index 2 whenever n exceeds 4 and only two other 
invariants subgroups besides identity, viz., the mentioned sub­
group of index 8 and one of index 4 corresponding to the in­
variant subgroup of order 2 of the octic group. These re­
sults apply also to the special case when n = 3. 

TRANSLATION SURFACES IN HYPERSPACE. 

BY PROFESSOR C. L. E. MOORE. 

(Read before the American Mathematical Society, April 27, 1918.) 

1. If the rectangular coordinates of the points of a surface 
can be expressed in the parametric form 

(1) Xi = fi{u) + gi(v) (i = 1, 2, . . ., n) , 

where ƒ * are functions of u alone and gi functions of v alone, the 
surface is called a translation surface. I t is seen that a trans­
lation can be found which will send any parameter curve 
u = const, into any other one of the same system. The same 
is true of the curves v = const. The surface (1) is also seen 
to be the locus of the mid-points of the lines joining the points 
of 
(2) Cxi Xi: = 2gi{u) to the points of C2: #»• = 2fi(v). 

The character of the surface can then be determined, in a great 
measure, by the form and relative position of these two curves. 
Nearly all writers on surface theory* mention three facts con­
cerning translation surfaces in 3-space : 

(a) The generators of the developable which touches the 
surface along a curve u = const, are tangent to the curves 
v = const., or in other words the directions of the parameter 
curves passing through a given point are conjugate directions. 

(b) There are surfaces which can be expressed in more than 
one way in the form (1). 

* Darboux, Théorie générale des Surfaces, vol. 1, pp. 148, 340. Scheffers, 
Theorie der Flâchen, vol. 2, pp. 188, 245. 
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(c) Minimum surfaces are always translation surfaces. The 
curves u = const., v = const., in this case, are minimum 
curves. 

It is the object of the present note to examine translation 
surfaces in hyperspace as to the properties (a), (6), (c) and also 
to determine the relation between the curves C\ and 0% in 
order that (1) be a developable surface. 

From (1) we see that the coordinates of the surface satisfy 
the linear partial differential equation of the second order 

Segre* showed that if the coordinates of a surface satisfy a 
linear partial differential equation of the second order, then 
there are two directions through each point having the prop­
erty (a) of conjugate directions. These are called the char-
acteristics and are determined by the characteristic equation 
of the partial differential equation. The characteristic equa­
tion of (3) is 

dudv = 0. 

Therefore the parameter curves on (1) are characteristics. 
Hence if (3) is the only partial differential equation of the second 
order which the coordinates of the surface satisfy, there are just 
two characteristics through each point and the surface cannot be 
expressed in more than one way in the f or m (1). The form of 
equation (1) shows that the developables mentioned in (a) 
are cylinders. 

2. Ruled Translation Surfaces.—Segre showed, in the paper 
referred to, that if the coordinates of a surface satisfy two lin­
ear partial differential equations of the second order the sur­
face must either lie in a 3-space or else consist of the tangent 
lines to a twisted curve. I showed f that if the surface does 
not lie in a 3-space the two differential equations must be such 
that the pencil formed by them will contain only one equation 
of parabolic type. If now in addition to (3) the coordinates 

* "Su una classa di superficie degl'iperspazii," ecc. Atti di Torino, 1907. 
t C. L. E. Moore, "Surfaces in hyperspace which have a tangent line 

with three-point contact passing through each joint." This BULLETIN, 
vol. 18 (1912). 
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satisfy a second equation, it must be of the form 

Every equation of the pencil 

Aa*z ^d2z BdZ cdZ ^ Q 
di£2 â^dfl di/. 3fl ' 

where X is the parameter, will then be satisfied. The surface 
will then have an infinite number of characteristics. It is to 
be observed, however, that the characteristic equation is 

Adv2 — \dudv = 0, 

which for all values of X has dv = 0 for one factor. This is 
the direction of the characteristic of (4), and I showed in the 
article referred to that this is the direction of three-point 
contact and that there is only one such direction passing 
through a point and hence this must be the direction of the 
rulings of the developable. We therefore conclude that how­
ever the surface is expressed in the form (1) the rulings must 
form one parameter system. The other parameter system can 
be any one-parameter family of curves traced on the devel­
opable. Equation (1) then takes the form 

Xi = hu + gi(v), 

where hi are constants. It is seen that the rulings are parallel 
and therefore the surface is a cylinder. Hence cylinders are 
the only translation surfaces in hyperspace which can be ex­
pressed in the form (1) in more than one way. 

The coordinates of any ruled surface must satisfy a parabolic 
differential equation of the second order, and if it is a trans­
lation surface will satisfy two equations and therefore will be 
the same as above. Hence cylinders are the only ruled surfaces 
of translation. 

3. Developables.—Let u and v be the arc length on the param­
eter curves. Then the element of arc on the surface becomes 

ds2 = du2 + aududv + dv2, 

file:///dudv
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where au = 2 / / # / . The formula for the Gaussian curvature 
then reduces to 

where a = 1 — ai2
2. If G = 0, we have on integrating 

(6) a 1 2 = c o s ( C 7 + F ) , 

where J7 is an arbitrary function of u alone and V an arbi­
trary function of v alone. This is then the condition that the 
surface be developable, that is, have zero curvature. From 
the definition of ai2 we see that (6) says that the angle between 
any tangent to d and any tangent to C2 is always expressible 
as a function of u plus a function of v. To determine the 
relation between Ci and C2 in order that (6) may be satisfied 
let 71 and 72 be the spherical representation of the curves Ci 
and C2. (That is, 71 and 72 are the traces on the unit hyper-
sphere, center at 0 say, made by lines through 0 parallel to 
the tangents.) The distance from a point of 71 to a point of 
72, measured on the sphere, will be equal to the angle between 
the corresponding tangents to Ci and C2. Let Ui represent a 
series of points on 71 and V{ a series of points on 72. Let 0# 
represent the distance from Ui to Vi. Then, if relation (6) is 
satisfied, we have 

dri = U(ur) ~ V(Vi), d$i = U(US) - V{v%). 

Subtracting, 

dri — Osi— U(ur) — U(US). 

Thus the difference of the distances from «»• to ur and us is 
independent of Vi and hence Vi must lie in the locus of points 
the difference of whose distances from ur and us is constant. 
This must be true for any values of r and s. Hence if 71 is 
an n-dimensional curve (does not lie in a space of lower dimen­
sions), 72 must reduce to a point, which means that O2 is a 
straight line. If however 71 lies in a linear space Sk(Jc < ri) 
passing through 0, then (6) will be satisfied if 72 lies in the space 
Sn-h completely perpendicular to &. In this case the dis­
tance from any point of 71 to any point of 72 is T/2. CI 
and 02 will then be any two curves lying in completely per-
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pendicular spaces. In particular if 71 is a great circle on the 
hypersphere, then 72 could either lie in the completely perpen­
dicular space or it could coincide with 71, in which case (6) 
would be satisfied. The curves Ci and C2 for this last condi­
tion become any curves lying in parallel planes. The surface 
of translation would then reduce to a plane. If now 71 lies in 
a linear space Sk which does not pass through 0 and 72 lies 
in the space Sn-k passing through 0 and completely perpen­
dicular to Sk, then each point of 72 will be the same distance 
from all points of 71 but these distances will vary with the 
point of 72. In this case then the distance is a function of v 
only and (6) will be satisfied. The curve C2 will then be any 
curve lying in a space of n — k dimensions and Ci will be such 
that any tangent will make the same angles with any line in 
this space. If the space of C2 be taken as a coordinate space 
the two curves must then have the form 

Ci: x% = 9i{u) (i= 1,2, . . ., h), 

Xj = ajU 0" = ife + 1, ife + 2, . . ., n); 
(7) 

C2: Xi= 0 ( i = 1, 2, . . .,k), 

Xj = iyO) (j = & + 1, & + 2, . . ., n) , 

where aj are constants. We then have the results: (a) if C\ 
and C2 lie in parallel planes, the resulting translation surface is 
a plane; ((3) if they lie in completely perpendicular planes, or 
(7) if they have the form (7), the translation surface is a non-ruled 
developable, (ô) If one of the curves reduces to a straight line, 
the translation surface is ruled. 

The surface generated by the midpoints of the lines joining 
the points of the two curves 

#i = 2a cos u, X2 = 2a sin u, x% = x± = 0. 

#1 = #2 = 0, #3 = 2b cos v, #4 = 26 sin v 

is the rotation surface 

Xi = a cos u, X2 = a sin u, x% = b cos v, x± = b sin v 

which is left invariant by all the rotations leaving the X1X2 and 
#30:4 planes invariant.* 

* C. L. E. Moore, "Rotations in hyperspace," Proceedings American 
Academyj vol. 53 (1918). 
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4. Covariant Derivatives.—In discussing those properties of 
a surface that have to do with the normals or curvature of 
curves traced on the surface it is very convenient to make use 
of covariant derivatives instead of the ordinary second par­
tial derivatives. If the surface is expressed in vector form, 
the covariant derivatives are always normal to the surface 
while the ordinary second partial derivatives are not. A sec­
ond vector fundamental form, analogous to the second funda­
mental form in three dimensions can be written in terms of 
these covariant derivatives.* The vector equation of (1) is 

n 

i 

where ki are unit vectors parallel to the coordinate axes» 
Then 

(8) m = I s = 2#Mfe* n = % = S^'w^ 
If u and v are arc lengths along the parameter curves, 

(9) m2 = m-m= 2//2(>) = 1, n2 = n-n = Hgi'\v) = 1. 

The ordinary second partial derivatives are 

uu; d2p 

From these we obtain 

m-p = S / / / / ' = 0, m-q = 0, m-r = S / . V , 

n-p = S / / V , n>q = 0, ra-r = Sjr/jr/' = 0. 

In terms of these we can write the covariant derivativesf 

(12) 2/u = (m X n) X (ire X n X p) = -

m 
m2 

n*m 

n 
m*n 
n2 

V 
m*p 
ri'p 

* Wilson and Moore, "Differential geometry of two dimensional sur­
faces in hyperspaee," Proceedings American Academy, vol. 52 (1916). 

t Wilson and Moore, loc. cit., pp. 337-338. 
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where a = 1 — ( 2 / y ) 2 . The derivative 2/12 is obtained by-
replacing p by q in (12) and y22 is obtained by replacing p by 
r. I t is seen that 2/12 = 0. This is a sufficient condition that 
the plane of the indicatrix (the locus of the end of the curvature 
vector of normal sections of the surface at a given point) pass 
through the surface point. Translation surfaces therefore are 
what Wilson and Moore called of the four-dimensional type. 

5. If now the curves Ci and C2 lie in completely perpendic­
ular spaces, 

m-n = 2ft V = 0. 

This is the only surface of translation on which the parameter 
curves are orthogonal. The vector p will lie in the plane of 
Ci, and r in the plane of C2, therefore 

m-r = Z / . V = 0 , n-p = 2 / / V = 0. 

Hence we have for this type of developable 

(13) 2/11 = p, 2/12 = 0, 2/22 = r. 

Thus p and r are normal to the surface and since they are the 
curvatures of the parameter curves we see that the curves 
u = const., v = const, are geodesies on the surface (curvature 
lies in the normal plane). Hence on a non-ruled developable 
translation surface on which the generating curves are everywhere 
orthogonal those curves are geodesies. 

The area of the indicatrix is (Wilson and Moore, page 333) 

2a3/V X S = «122/n X 2/22 + («222/n - 1̂12/22) X 2/12; 

and since ax2 = 2/12 = 0, the area is zero. The indicatrix then 
reduces to a linear segment. Since 2/11 and 2/22 do not coin­
cide in direction, this linear segment does not pass through the 
surface point. The curves u = const., v = const, are the 
Segre characteristics, and we know that when the indicatrix 
reduces to a linear segment the characteristics will be orthog­
onal and that the end of the curvature vector of these curves 
are the ends of the linear segment to which the indicatrix re­
duces. The indicatrix subtends a right angle at the surface 
point. 

The vector mean curvature is half the sum of the vector 
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curvatures in two perpendicular directions passing through 
the point considered. This sum is independent of the pair of 
perpendicular directions chosen. Then in this case we can 
choose the parameter curves and we have 

h = iS(//' + gi")h, 
from which we see that the locus of the end of the mean curva­
ture vector is also a translation surface and in fact is a devel­
opable of the type of the original surface. The locus of the 
indicatrixas the point in question describes the whole surface 
is the locus of lines cutting the two curves 

Ci": Xi=2f"(u), C2": xi=2gi"(v). 

If the mean curvature is perpendicular to the indicatrix, 

Z / / ' 2 - Zjr/'2 = 0, 

hence the curvature of C\ and C2 must be the same at all points 
and both constant, that is, they must be equal circles. If 
they have the same center the surface will be a rotation sur­
face. 

6. The second kind of non-ruled developable arises when 

d: Xi=2fi(u) (i= 1, 2, . . ,,k), 

Xj = 2a/u (j = k + 1, k + 2, . . ., n); 

C2: Xi= 0 (i= 1, 2, . . ., k), 

Xj = 2g3{v) (j = k + 1, k + 2, . . ., ri), 

and the equation of the surface will be 
k n 

1 k+l 

In this case then we have 

m-p = 0, n-p = 0, m-q = 0, n-q = 0, n-r = 0, 

ra-r = Zajg/'. 

If these values are substituted in (12), we have 

2/ii = Vy 2/i2 = 0, Î/22 = r — (m-r)m + (m-n)(m-r)n. 



1918.] TRANSLATION SURFACES IN HYPERSPACE. 83 

Hence the curves u = const, are geodesies on the surface, but 
in general the curves v = const, are not. If however m • r = 0 
both sets of parameter curves are geodesies. Integrating this 
relation we have 

^dj-g/ = F = const., 

and from what we saw previously concerning the relation 
§ 3 this would require that the curve C2 be a line and that the 
surface be ruled. Hence if Cx and C2 do not lie in com­
pletely perpendicular spaces and the translation surface is 
not ruled, both parameter systems cannot be geodesies on the 
surface. 

The indicatrix for this type of surface does not reduce to a 
linear segment. 

7. Surfaces for WhichCi and C2 Coincide.—If the curves Cx and 
C2 coincide, the surface (1) becomes the locus of the midpoints 
of the secants of a fixed curve. The surface is entirely similar 
to the same case in 3-space, except that in 3-space the fixed 
curve is an asymptotic line on the surface. Here the curve 
lies on the surface and is the locus of points at which the char­
acteristics coincide. This curve has the property of an asymp­
totic line on a surface in 3-space.* The osculating plane of 
the curve is tangent to the surface and the tangent lines to 
this curve have three-point contact with the surface.! This 
is the only such line on the surface. 

8. Minimum surfaces.—If we use the minimum curves on a 
surface as parameter lines, the coefficients in the first funda­
mental form are 

an = m-m = 0, a22 = n-n = 0, au = m*n. 

The element of arc then becomes 

ds2 — andu2 + 2andudv + a^dv2 = 2ai2dudv. 

The general formula for the mean curvature in terms of the, 
covariant derivatives is 

2h = 2a(ra>yr„ 

where a(rs) is the complement of ar8 in the determinant \a^\ 
* Segre, loc. cit. 
t C. L. Moore, " Surfaces in hyperspace, etc.," BULLETIN, vol. 18 (1912). 
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divided by a. In this case then 

a(iD = o, a<22> = 0, a<12> = — 
an 

and the formula for h becomes 

1 
2h = — yn. 

The vanishing of the vector mean curvature is the necessary 
and sufficient condition for a minimum surface. Then, if the 
surface is minimum, 

2/i2 = 0. 

In 3-space if the minimum lines are taken as the parameter 
curves on a surface, the condition that the surface be minimum 
is the vanishing of the second coefficient in the second funda­
mental form. In hyperspace we have the same condition 
with respect to the vector second fundamental form. From 
(12) this condition becomes 

t/i2= (m X n) • (m X n X q) = 0. 

The dot product is that used by Wilson and Lewis* and the 
vanishing here requires that q lie in the plane m X n, that is 

m X n X q = 0. 

This is equivalent to saying that the coordinates must satisfy 
the differential equation 

which again amounts to saying that there is a linear relation 
connecting m, n, q 

(15) Aq+ Bm+ Cn = 0. 

Differentiating the relations m2 = 0, n2 = 0, we see that 

m*q = 0, rt'q = 0. 

* "Space time manifold of relativity," Proceedings Amer. Acad., vol. 48 
(1912). 
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Multiplying (15) by m, we have 

Cm-n = Cai2 = 0. 

Since aw 4= 0, C = 0. Likewise multiplying by n we see that 
B = 0. Hence equation (14) becomes 

duav 

Hence, the minimum surface is a surface of translation. The 
necessary and sufficient condition that a surface in hyperspace 
be a minimum surface is that the minimum lines on it are char­
acteristics. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. 

SOME ALGEBRAIC CURVES. 

BY DR. JAMES H. WEAVER. 

(Read before the American Mathematical Society, April 28, 1917.) 

I N the following paper two algebraic curves are set up and 
some of their singularities are discussed. The author be­
lieves them to be new. At least a search through consider­
able of the literature on curves has failed to reveal them. 

I. 

Let there be any two distinct points A and B. Let the line 
joining A and B be drawn, and let the distance AB = c. 
Let there be drawn through A a line k making an angle 0 
with AB, and let there be drawn through B a line h making an 
angle nO with AB (n an integer). We also consider that AB, 
ll9 and h are in one plane. Let the intersection of k and k be 
C. I t is required to find the locus of C. 

Let A be the origin and let AB be the #-axis. Then the 
equations of the lines Zi and k will be 

(1) y = x tan 6, (2) y = (x — c) tan (n6) 

respectively. 


