This process may evidently be continued. We may then state the following

Theorem: The r th polar of B with respect to C_{n} is C_{n-r}.

II.

Again let there be three distinct points A, B, and C on the same straight line l, and through the point C let the line l_{1} be drawn perpendicular to l. Let lines l_{2} and l_{3} be drawn through A and B respectively, and let l_{2} and l_{3} intersect on l_{1}. Let l_{2} make an angle α with l, and l_{3} make an angle β with l, and let a line l_{4} be drawn through B, making an angle $n \beta$ with l. Let l_{2} and l_{4} intersect in D. Then just as in section I, the equation representing the locus of D is

$$
\begin{align*}
& k\left[x^{n}-\binom{n}{2} x^{n-2} y^{2}+\cdots\right] \tag{7}\\
& \quad=(x-c)\left[\binom{n}{1} x^{n-1}-\binom{n}{3} x^{n-3} y^{2}+\cdots\right]
\end{align*}
$$

where $k=(a-c) / a$ and $a=A C$, and $c=A B$.
It is then evident that the theorem in section I holds for the curve represented by equation(7).

Ohio State University.

ON THE RECTIFIABILITY OF A TWISTED CUBIC.

```
BY DR. MARY F. CURTIS
```

(Read before the American Mathematical Society, April 27, 1918.)
Given the twisted cubic

$$
\begin{equation*}
x_{1}=a t, \quad x_{2}=b t^{2}, \quad x_{3}=c t^{3}, \quad a b c \neq 0 \tag{1}
\end{equation*}
$$

to show that the condition that it is a helix is precisely the condition that it is algebraically rectifiable.

If (1) is a helix, then T / R, the ratio of curvature to torsion, is constant. Denoting differentiation with respect to t by
primes, we have

$$
\begin{aligned}
& x^{\prime}: \quad a \quad 2 b t \quad 3 c t^{2} \text {, } \\
& x^{\prime \prime}: 0 \quad 2 b \quad 6 c t \text {, } \\
& x^{\prime \prime \prime}: 0 \quad 0 \quad 6 c \text {, } \\
& \left(x^{\prime} \mid x^{\prime}\right)=a^{2}+4 b^{2} t^{2}+9 c^{2} t^{4}, \quad\left(x^{\prime \prime} \mid x^{\prime \prime}\right)=4\left(b^{2}+9 c^{2} t^{2}\right), \\
& \left(x^{\prime} \mid x^{\prime \prime}\right)=2 t\left(2 b^{2}+9 c^{2} t^{2}\right), \quad\left|x^{\prime} x^{\prime \prime} x^{\prime \prime \prime}\right|=12 a b c, \\
& \left(x^{\prime} x^{\prime \prime} \mid x^{\prime} x^{\prime \prime}\right)=\left(x^{\prime} \mid x^{\prime}\right)\left(x^{\prime \prime} \mid x^{\prime \prime}\right)-\left(x^{\prime} \mid x^{\prime \prime}\right)^{2} \\
& =4\left(a^{2} b^{2}+9 a^{2} c^{2} t^{2}+9 b^{2} c^{2} t^{4}\right) . \\
& \frac{T}{R}=-\left(\frac{x^{\prime} x^{\prime \prime} \mid x^{\prime} x^{\prime \prime}}{x^{\prime} \mid x^{\prime}}\right)^{3 / 2} \frac{1}{\left|x^{\prime} x^{\prime \prime} x^{\prime \prime \prime}\right|} .
\end{aligned}
$$

Since $\left|x^{\prime} x^{\prime \prime} x^{\prime \prime \prime}\right|$ is constant, T / R is constant when and only when ($\left.x^{\prime} x^{\prime \prime} \mid x^{\prime} x^{\prime \prime}\right) /\left(x^{\prime} \mid x^{\prime}\right)$ is constant. We thus have

$$
4\left(a^{2} b^{2}+9 a^{2} c^{2} t^{2}+9 b^{2} c^{2} t^{4}\right) \equiv \rho\left(a^{2}+4 b^{2} t^{2}+9 c^{2} t^{4}\right)
$$

hence $\rho=4 b^{2}$ and $9 a^{2} c^{2}-4 b^{4}=0$. Conversely, for all values of $a, b, c, a b c \neq 0$, for which

$$
\begin{equation*}
9 a^{2} c^{2}-4 b^{4}=0 \tag{2}
\end{equation*}
$$

T / R is constant-in particular, is equal to ∓ 1, according as $2 b^{2}= \pm 3 a c$-and the cubic (1) is a helix.

If we had fixed our attention on another characteristic property of a helix, namely, that the tangent makes with a fixed direction a constant angle, we should have again derived the condition (2). The fixed direction-that of the axis of the cylinder on which the helix lies-is $(1 / \sqrt{2}, 0, \pm 1 / \sqrt{2})$ and the helix cuts the rulings of the cylinder under an angle of 45°.

That (2) is a necessary and sufficient condition that s, the arc of (1), is an algebraic function of t and hence that (1) is algebraically rectifiable follows from the fact that the integral

$$
\begin{equation*}
s=\int_{t_{0}}^{t} \sqrt{a^{2}+4 b^{2} t^{2}+9 c^{2} t^{4}} d t \tag{3}
\end{equation*}
$$

is algebraic when and only when (2) holds. Hence the theorem: The twisted cubic (1) is algebraically rectifiable when and only when it is a helix.

