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imaginary fields, there exist s = r + c — 1 units ei, . . . , es 

in F such that every unit e of F can be expressed in one and but 
one way in the form 

€ = pe*i . . . €*.f 

where a\> . . . , as are rational integers, positive, negative or 
zero, while p is a root of unity belonging to the field F. 
Kronecker* gave a proof along the lines suggested by Dirichlet. 
Another algebraic proof had been given by Dedekind.f 

Minkowski} gave a new proof which is largely algebraic, but 
makes some use of his geometric results. Later, he gave§ a 
more purely geometric form to his proof, confining his discus­
sion to the typical cases of cubic and quartic fields. This 
proof makes use of various ideas and results of the geometry 
of numbers and shows the power and attractiveness of the 
latter subject. 

5. Classes of Ideals.—In his proof of the finiteness of the 
number of classes of ideals in a cubic field, Minkowski] | made 
use of his results on the upper bound of a product of three 
linear forms. The process enables us actually to find repre­
sentatives of the various existing classes of ideals. This 
problem would be simplified by the discovery of more exact 
upper bounds. 

PRODUCTS OF SKEW-SYMMETRIC MATRICES. 

BY PROFESSOR A. A. BENNETT. 

I N the March (1919) number of the BULLETIN occurs (page 
281) the following: The philosophical faculty of the Univer­
sity of Berlin announces the following prize problem: "To 
determine by means of the theory of elementary divisors, the 
criteria that a given matrix be capable of representation as 
the composition of two skew-symmetric matrices." A dis-

* Comptes Rendus, Paris, vol. 96, 1883; vol. 99, 1884; Werke, IIIi, 
pp. 1-30. 

t Dirichlet-Dedekind, Zahlentheorie, ed. 2, 1871, §166, pp. 471-9; 
ed. 3, 1879, § 177, pp. 555-567; ed. 4, 1894, § 183, pp. 590-603. Cf. 
Hubert, Jahresbericht der Deutschen Math.-Vereinigung, vol. 4, 1894-5, 
pp. 214-222. 

t Geometrie der Zahlen, 1896, pp. 135-147. 
§ Diophantische Approximationen, 1907, pp. 133-148. 
|| Diophantische Approximationen, pp. 162-167. 
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cussion of this topic appears therefore of timely interest. To 
avoid prolixity, only the case of non-singular matrices will be 
here considered. 

For the sake of brevity and clarity the order of the proof 
will not be interrupted to prove elementary lemmas which 
in themselves present no difficulty, but several of such lemmas 
will be stated without proof at the start. Some of these are 
proved in all discussions of elementary divisors and others 
while not so familiar present no new difficulties. The defini­
tions and notations employed are those of Bôcher: Introduc­
tion to Higher Algebra. 

Some Preliminary Lemmas and Definitions. 
1. If P is any non-singular matrix, there exist uniquely de­

fined non-singular matrices P ' and P - 1 , known respectively as 
the conjugate or transposed, and as the inverse of the given 
matrix. Further, (P')"1 = (P"1)' and P~XP = PP~l = / , 
where I is the identity, i. e., MI = IM = M for every square 
matrix M of the same order as L 

2. Skew-symmetric matrices of odd order are necessarily 
singular, but non-singular skew-symmetric matrices exist of 
all even orders. 

3. If A and B be square matrices of the same order m 
and with constant elements, the matrix A + XP, where X 
is variable, is called a linear X-matrix. The greatest common 
divisor of all determinants of order j , formed by suppressing 
n — j rows and n — j columns of A + XS, will be a polynomial 
in X. If the arbitrary numerical multiplier in the definition 
of the greatest common divisor be so taken that the non-
vanishing term of highest degree in X has unity for coefficient, 
this polynomial is denoted by Dj(\). The ratio Z)*(X)/D*_i(X), 
where Z)0(X) is arbitrarily defined as unity, is called the iih 
invariant factor, and is denoted by Ei(k). For i odd, Ei 
is called an odd invariant factor, and for i even, an even 
invariant factor. 

4. Operations on matrices which merely interchange rows 
or columns, or multiply rows or columns by non-vanishing 
factors, or replace a given row by the sum of this row and 
another, or likewise with columns, are called elementary 
transformations. 

5. If each of two linear X-matrices is carried into the other 
by means of elementary transformations, these have the same 
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invariant factors. Hence, in particular, PMP"1 — XI and 
M — XI have the same invariant factors, for any matrix P 
of the same order, since the existence of P - 1 implies that P 
is non-singular. 

6. There exists a standard skew-symmetric matrix T of 
order 2n, defined by the condition that if Uj be a general 
element of T, Uj = 0, for j ^= 2n — i, U, 2n-% — — 1, 0 < i ^ n, 
Ut 2n-i = + 1, n < i ^ 2n. This standard matrix T is called 
"standard," for the reason that for any non-singular skew-
symmetric matrix 8 of order 2n, there is a non-singular matrix, 
P, such that P8Pr = T. 

7. If a matrix K of order 2n be such as to have throughout 
among its elements a# = an+it n+j, i ^ n, j ^ n, and a# = 0, 
if i ^ w < j or j ^ w < i, then the submatrix Ko consisting 
of the elements a#, where i ^ n, j ^ n, determines the in­
variant factors of K. Indeed if Flf F2, . . . , Fn, be the invariant 
factors of Ko, E2i~i = E2i = I\-, i = 1, 2, • • -, n, where Ey 
is the jth invariant factor of K, j = 1, 2, • • •, 2w. 

8. If Si and S2 are any two non-singular skew-symmetric 
matrices of the same order, 2n, the linear X-matrix Si + \S2 
may be reduced by elementary transformations to a form 
L+ \T, where T is the standard matrix defined above, 
and the elements a of I satisfy the conditions that 
Ct>i, 2n-h = ~" a>2n-h, i, i S n> k ^ n> ai, 2n-h = 0, % ^ U ^ Jl, 
or h < n < i. Further specialization of the skew-symmetric 
matrix L is also always possible. 

Discussion of the Problem. 

Let M be the given non-singular matrix for which it is de­
sired to determine whether M is of the form SiS2, where /Si, 
S2 are skew-symmetric matrices. By (2), M must be of even 
order, say 2n, since otherwise both Si and S2 would be singular 
and hence M also. One may select a non-singular matrix, 
P, such that PilfP-1= (PSiPOCP'-^sP"1) is of the form 
Mx = TS. The matrix Mx — XI, or TS — XI, becomes, on 
changing the sign of the first n rows and rearranging rows, 
S + X37, the 8 and T having the same meaning as previously. 
Using (8), this may be put in the form L + \T. Changing the 
sign of the last n rows and again rearranging rows, this may 
be written K — XI, K being as in (7). From this one has 
the following conclusion: 
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THEOREM. A necessary and sufficient condition that a non-
singular matrix, M, shall be expressible as the product of two 
skew-symmetric matrices, viz., M = S1S2, is that every even 
invariant factor of the linear \-matrix, M — \I, shall be equal 
to the preceding odd invariant factor * 

UNIVERSITY OF TEXAS. 

ON THE FIRST FACTOR OF THE CLASS NUMBER 
OF A CYCLOTOMIC FIELD. 

BY MR. H. S. VANDIVER. 

(Read before the American Mathematical Society April 27, 1918.) 

LET I be an odd prime rational integer and consider the 
cyclotomie field defined by e2inlK A number of questions con­
nected with this field depend on the divisibility of its class 
number by I and its powers. This class number can be ex­
pressed as the product of two integral factors one of which 
(generally referred to as the first factor) is 

U; n - (2/)*<M> 

where 
f(x) = r0 + rxx + r2x

2 + • • • + n-2x
l~2, 

Z = e21"11"1, r is a primitive root of I, and rt- is the least posi­
tive residue of r{, modulo I. 

Kummerf proved that the necessary and sufficient condi­
tion that h be divisible by I is that one of the numbers of Ber­
noulli, Bs, [s = 1,2, • • • , ( / — 3)/2] is divisible by l,a B being 
termed divisible by an integer i when its denominator is 
prime to i and its numerator is divisible by i. KroneckerJ 
gave another proof which was reproduced by Hubert.§ 

* Otherwise expressed, the condition is that the number of integers 
within parentheses in the characteristic shall always be even, and these 
alike in pairs. Thus [(2, 2); (3, 3, 1, 1); (1, 1)] is possible, while [(2, 1); 
(2, 1)]; [2], and [1, 1] are impossible. 

t Journal für die Mathematik, vol. 40 (1850.) 
% Werke, vol. 1, p. 93. 
§ Die Theorie der algebraischen Zahlkörper, Bericht, p. 429. 
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