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PARAMETRIC EQUATIONS OF THE PATH OF A 
PROJECTILE WHEN THE AIR RESISTANCE 

VARIES AS THE nTH POWER OF THE 
VELOCITY. 

BY PROFESSOR F. H. SAFFORD. 

(Read before the American Mathematical Society April 27, 1918.) 

THE differential equations to be solved are 

W d2x TT dx W d2y TTT ^ dy 

w 7 ^ = - ^ ' ié=w-K*°ni> 
in which vc is the velocity along the path, W is the weight of 
the projectile and K and n are experimental constants, the 
dimensions of K being W-l~~n-tn. Obviously the X axis is 
taken horizontal, the Y axis vertically downward. 

M. de Sparre* gives a solution for n = 2, making however 
certain approximations in the early stages, and presents his 
results in two cases corresponding to the paths before and 
after the time when the slope is unity. Greenhillf treats 
with much detail the case of n = 3. 

For the general case of unrestricted n, equations (1) may 
be written 

(2) 
g df~ l\_dt ] + \_dt \ \ ' it' 

fS—4[IH!]*r" 
dy 
dt' 

and next transformed by writing 

dx dy . ^ 
(3) -jT = v = r cos 0, -77 = u = r sin 0, 

so that r and 0 are the polar coordinates of the hodograph. 
If the origin is taken at the point of release of the projectile 
and a is the angle of depression, V being the initial velocity, 

* Comptes Rendus, volume 160, p. 584. 
t Elliptic Functions, pp. 244-53. 
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then for x, y and t all zero, r and 0 become V and a respec
tively, also 

(4) ^ - ^ c o B a , ^ = F s m a. 

Writing W/(gK) = S, W/K = T, equations (2) become suc
cessively 

(5) S j t = - fa'-W^1*'2-*, S j t = T- (u2+ v^-W-u, 

Jr m . „ n dd 
jin 0 — rn, o r j , : 

dr r^0 dt 

(6) fi^ = T sin 0 - rw, £ r ^ = T cos 0, 

(7) T sin 0 - rn T7 cos 0 « * 
From (7) 

dr n rn+1 

-jk — r tan 0 = — ^ 2, 
a0 r cos 0 

which is reducible to the linear form, giving 

(8) r=z\~f"+"f J sec Öd9 sec Ö* 
H in (8) is a constant of integration to be determined by the 
use of the initial conditions, i.e., r becomes V when 0 is a, 
hence 

• sec a (9) V=[~+^f\ec^dde^ 
or 

( 1 0 ) H = nKVn cos- a J0 ' 

(It will be noticed that JBT is of zero dimension.) Later expres
sions will be simplified by the introduction of a new constant 
Ny which becomes unity when a is zero, or the initial direction 
of the motion is horizontal, viz., 

r i ra il/n 

N=\ 1 + -IT I secw+1 0d0 cos a, 

but N need not be computed since 

(11) VN = (W/(nKH)y\ 
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The reduced form of (8) is 

1 + HJ secn+l0de sec^ 
Again from (7) 

(13) A = ™ i = — 1 + T? secn+1 0d0 sec2 OdO. 
v Tcosö jf L # J o J 
Combining (3) and (13), 

V2N2T 1 / " l-(2/n) 
dx = 1 + r? secn+1 Odd sec2 0d0, 

(14) * L HX J 

v ' v2N2r l r6 i-(2/n) 
efy = 1 + ^ I secw+1 0d0 sec2 (9 tan Odd. 

In (14) let tan 0 = s, thus introducing « as the parameter 
which will appear in the final equations, whence 

(15) 

v2N2Y l r n-(2/n) 
dx = —^ i + jj J (i + z2yn-»'2dz dz, 
dy = 1 + jj J (1 + z2yn-»Hz zdz. 

Integration of (15) completes the formal task of obtaining the 
parametric equations of the trajectory, equations (10) and (11) 
giving the values of H and VN respectively. The practical 
difficulty lies in obtaining expansions of the bracketed expres
sion in (15). 

As a preliminary it is necessary to divide the computation 
(and the path) into two parts corresponding to values of z 
less than and greater than a certain value ZQ, defined by 

(16) ^ P ° ( l + *2)(n~1)/2<fe== 1, 

a procedure which was suggested by a discussion in ChrystaPs 
Algebra, volume 2, page 213. The computation of zQ is by 
approximation, and if Zo is less than 1 the binomial theorem is 
available. When zo is greater than 1 the integration in (16) 
must be taken in two intervals and that from 1 to z0 effected 
by replacing z by s"1 before expanding, also using $0 = so""1. 

Let P be the bracketed expression in (15), and then 
cp(P) = [P(z)]~Wn) and cp(Q) = [<2(*)F<*'n) can represent func-
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tions in (15) in the respective intervals 0 to Zo for z and 0 to So 
for s. Arbogast's method of derivations (v. Williamson's Dif
ferential Calculus) is of assistance in making the necessary 
expansions especially as the computations for the two func
tions are identical up to a certain stage. Following Arbogast's 
notation closely, the work for <p(P) is as follows: 

[ 1 /•» ~|-(2/n) 

= A + Bz + Cz2/2\ + Z>23/3! + • • -, 

P(») = a + bz + cz2/2l + dz3 3! + • • • 

= P(0) + P'(0)z + P"(0)z2/2 ! + P'"(0)23/3 ! + ••-, 

in which z lies between 0 and z0, and A, B, • • • a, b are to be 
computed. From (17) and (18) come the successive deriva
tives of <p(P), also 

a = P(0) = 1, b = P'(0) = 1/H, c = P"(0) = 0, 
( 1 9 ) d= P'"(0)= (n- 1)/H ••-, 

A = <p(a), B =* <p'(a)-b, C = <p'(a)-c + <p"(a)• b2, 

D = <p'{a)-d + <p"(a)-3bc + <p'"(a)-bs ••-, 

<p(a) = 1, <p'(a) = - 2/n, <p"(a) = 2(2 + n)/n2, 

<p'"(a) = - 2(2 + n)(2 + 2n)/nz ••-. 

These give the desired coefficients of <p(P), viz., 

A=l, B = - 2/(nH), C = 2(2 + n)/(n2H2), 

D = 2(n- 1)/(nH) - 2(2 + n){2 + 2n)/(n3H*) 

Similarly by the aid of (16) come 

Q(S) = 2 + HJS ^H * . 

1 (1 + s2)*-"-1»2 

„ ^ . <P(Q) = Â + B{s- so) + C(s - So)2/2! 
(17)* _ 

+ D(s-s0Y/3 ! + ••-, 
Q(s) = a+b(s- s0) + c(s - s0)

2/2\ 
(18)* 

+ d(s-So)z/2\ + ••• 
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(in which s lies between 0 and s0). <p(Q)> <p'(Q)> • • • are of the 
same form as <p(P), <p'(P), • • •. From (17)* and (18)* come 

(19) * 3 = QM = 2, b = Q'(80) = - (l+So2Yn'1)f2KHson+1) 

A, B, C, - * - in terms of â,b,c, • • • follow from (20). From 
(19)*, 
(21)* <p(a) = 2-^n\ <p'(a) = - 2(2)^2+n)'n/n 

giving finally A, B, C, - • • in terms of n, s0 and H. 
After obtaining A, 5 , • • • ; -4, 5 , • • • it is necessary to sub

stitute (17) and (17)*, corresponding respectively to the first 
and second portions of the path, in (15) and then to integrate. 
It should be noticed that P(zo) and Q(s0) are identical, so 
that the two portions have the same slope at their common 
point. For the first portion of the path 

V2N2 

x = [Az + Bz2/2l + fö>/3! + Dz*/4l • • •], 
(24) 8 

v J V2N2 

y = [Az2/2 + Bz*/3 + C*4/4-2! + Ds5/5-3! • • •], 
y 

no constant of integration being added as the origin is on the 
path. For the second portion of the path, using s = 1/z as 
the parameter, 

V2N2Y - - rds ~ r(s-
'[*-*&-'£*?>*•••]• 

y '25> _4?['-^-*x: f ev i*-]-
X and Y are constants of integration having the respective 
values of the two bracketed expressions in (24) when z has 
the value s0, i-e., when s is So* so that the two portions of the 
path join. 

It is evident that the accuracy of the observed constants 
W, K> V, n affects that of the computed constants, H, N, X, Y, 
and fixes a point beyond which the series expansions need not 
be carried, while the fact that x and y ultimately vary as V2 

shows that a given percentage of error in V gives approxi
mately a double percentage of error in x and y. 

UNIVERSITY OF PENNSYLVANIA, 
April, 1918. 


