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Then we may take n so great that £/w) contains every function 
in S», and then, since X/n) is the least norm, we must have 
X/w) < e, and consequently X; < e. Hence 

THEOREM IV. A necessary and sufficient condition that a 
normalized system [<p] be essentially linearly dependent is that 
\i = 0 for some i. 

Theorems II and IV give 
THEOREM V. A necessary and sufficient condition that a 

system [<p] have an adjoint is that it be essentially linearly 
independent 
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§ 1. Introduction. 

THIS paper treats of the relationships which exist between 
certain functional equations. In § 2, the equations 

(1) 8(x - y) = S(x)C(y) - C(z)S(y), 

and 

(2) C(x - y) = C(x)C(y) - k>S(x)S(y) 

are considered individually and as a system. It is shown that 
(1) and (2) have their solutions in common if C(x) is an even 
function and S(x) 4s 0. As a consequence, it is shown that 
if k 4= 0, then 

S(x) = [F(x) - F(- x)]/2k, and C(x) = [F(x) + F(- x)]/2} 

where F(x + y) = F(x)F(y). If h = 0 and S(x) # 0, C(x)= 1 
and 

S{x + y) = S(x) + S(ji). 

The work at this point is very closely allied to that of 
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Jensen* on the system of equations 

S(x+y) = S(x)C(y) + C(x)S(y), 

C(x + y) = C(x)C(y) + c*S(x)S(y). 

This system with c2 = — 1 has been discussed t by Tannery, 
Osgood, and Van Vleck and KPDoubler. 

The equation satisfied by F (x) has been discussedj by 
Cauchy, Vallée Poussin, Van Vleck and H'Doubler, and 
others. The solution analytic over the complex avplane has 
been shown to be F(x) — ecx, where c is an arbitrary constant. 
Vallée Poussin (loc. cit.) has shown that if F(x) is bounded 
in an interval (0, e) along the real axis, the solution when x is 
real is ecx, where c is an arbitrary constant. It follows, 
therefore, that if F(x) is bounded in an interval (0, e) along 
the real axis and in an interval (0, e') along the axis of imag-
inaries, and if x = u + v V— 1 where u and v are real, then 

F(x) = F(u+ A A P 7 ) = FMFiv^l) = ecu+dv, 

where c and d are arbitrary constants, since 
also satisfies the given equation. The solution continuous 
along any line in the complex œ-plane also takes the last named 
form. 

The equation S(x + y) = 8(x) + S (y) has been discussed 
by many writers of whom we may mention § Cauchy, Darboux 
and Vallée Poussin. The solution S(x) analytic over the 
complex #-plane is S(x) = ex, where c is an arbitrary constant. 
The solution bounded in an interval (0, e) on the real axis 
and in an interval (0, e') along the axis of imaginaries is, if 
x = u + v V— 1 as above, S(x) = cu + dv, where c and d are 
arbitrary constants. The solution continuous along a line in 
the complex #-plane also takes this last form. 

Andrade|| has found the continuous solution of 
(3) C(x + y) + C(x - y) = 2C(x)C(y), 

* Tidsskriftfor Mathematiky vol. 2, ser. 4 (1878), p. 149. 
t Tannery, Fonctions d'une Variable, 1886, p. 147. Osgood, Lehrbueh 

der Funktionentheorie, 1912, p. 582. Van Vleck and H'Doubler, Trans-
actions Amer. Math. Society, vol. 17 (1916), p. 30. 

t Cauchy, Cours d'Analyse (1821), Chapter 5. Vallée Poussin, Cours 
d'Analyse infinitésimale (1903), p. 30. Van Vleck and H'Doubler, loc. 
cit.. p. 20. 

S Cauchy, loc. cit. Darboux, Math. Annalen, vol. 17 (1880), p. 56. 
Vallée Poussin, loc. cit. 

|| Bulletin de la Société Math, de France, vol. 28 (1900), p. 58. 
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when x and y are real, by the use of integrals. Carmichael* 
has shown that equations (3) and 

(4) C(x + y)C(x - y) = C\x) + C\y) - 1, 0(0) = 1, 

to which all equations of the form 

C(x + y)C(x - y) = C2(x) + C\y) - m2, m + 0, 

can be reduced by the substitution C{x) = C(0)C(x), have 
their uniform analytic solutions in common if C(0) =|= 0 in (3). 
In § 3 it is proved that all solutions of (3) and (4), except the 
trivial solution C(x) = 0 of (3), are common. It is then 
proved that (3) and (4) have their solutions in common with 
the solutions of the system (1) and (2), where Six) is intro
duced in the discussion of (3) and (4) by the definition 

Six) = %[C(x - b) - C(x + b)] 

and is chosen to be not identically zero unless C(x) = 1. 
Carmichael (Ioc. cit.) also discussed the uniform analytic 

solutions of 

(5) S(x + y)S(x -y) = S\x) - S*(y). 

The periodic solutions of equations (4) and (5) were discussed 
by Van Vleck and EFDoubler (loc. cit., page 30), with the added 
relation C2(x) + S2(x) = 1. In § 4 no relation is assumed 
between the functions of (4) and (5) but it is proved that S (x) 
and C(x) defined by the relation C(x) = \[S(x + a) — S(x—a)], 
where S(a) 4= 0, satisfy equations (1) and (2). 

In §§5, 6, 7, the equations 

(6) g(x + y) - g(x - y) = 2fc2S(x)S(t/), k 4= 0, 

(7) f(x + y)+f(x-y) = 2f(x)C(y), 

and 

(8) S(x + y) - Six - y) = 2C(x)S(y) 

are discussed and their relationship with the preceding equa
tions is exhibited. 

Finally, in § 8, the general equation 

aF(x + y)Fix -y) = foQix) + yHrjy) + Ô 

ia, ft 7 =1= 0), 

* American Mathematical Monthly, vol. 16 (1909), p. 180. 
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is discussed and its relation to the preceding equations is 
exhibited. This is analogous to Pexider's* generalization of 
the Cauchy equations. 

It should be noted that the theorems of this paper are inde
pendent of the restrictions which may be imposed to obtain 
particular solutions of the equations. 

§ 2. Equations (1) and (2). 

THEOREM I. If S(x) and C(x) satisfy equation (1) and 
S(x) 4s 0, then the odd component of C{x) is a constant multiple 
of S(x), and 8(x) and the even component E(x) of C(x) satisfy 
equations (1) and (2) simultaneously, where 

*» = E2{al^{0) and S(a) + 0. 

Interchange x and y. Then 

S(y - x) = - S(x - y), 

that is, S(x) is an odd function and S(0) = 0. Discarding 
the trivial solution 8(x) = 0, there is some value a of x such 
that S (a) 4= 0. 

Let C(x) = E(x) + 0(x), where E(x) is even and 0(x) 
is odd. Equation (1) becomes 

(1') S(x-y) = S(x)E(y) + 8(x)0(y) - E(x)S(y) - 0(x)S(y). 

Replace x by — x and y by — y in (1') and add the equation 
thus obtained to equation (1/). Then 

S(x)0(y) - 0(x)S(y) == 0. 
If y = a, 

Equation (1') now becomes 

S(x -y) = S(x)E(y) - E(x)S(y), 
whence 

E(x)8(y) = S(x)E(3f) - 8(x - y). 

* Monatshefte für Mathematik und Physik, vol. 14 (1903), p. 293. 
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Now replace x by x — y and y by a. 

E(x - y)S(a) = S(x - y)E(a) - S(x - y - a) 

= [E(a)S(x) - 8{x - a)]E(y) 

- [E(a)E(x) - E(x - a)]S(y) 

= 8(a)E(x)E(y) - [E(a)E(x) - E(x - a)]S(y). 

Interchange x and y and compare the equation so obtained 
with the last equation. It is obvious that 

[E(a)E(x) - E(x - a)]S(y) = [E{a)E{y) - E(y - a)]S(x). 

Let y = a. Then 

E(a)E(x) - E(x -a) = k2S(a)S(x), 
where 

E\a) - JS(0) 
10 " S*(a) 

Therefore 
E(x - y) = E(x)E(y) - PS(x)S(y). 

THEOREM II. If S(x) and C(x) satisfy equation (2) and if 
C(x) 4E constant, then k 4= 0, S(x) + 0, and S(x) and C(x) 
satisfy equations (1) and (2) simultaneously. 

Interchange x and 2/. Then 

C(y - x) = C(* - 2/), 

that is, O(a0 is even. If S(x) = 0 or if & = 0, then 

C(x + y) = C(*)C(- y) = C(*)C(y) = C(x - y) 

and if y = #, 
<7(2z) s C(0), 

that is, C(#) is identically constant (0 or 1). Setting aside 
this trivial case, k =}= 0, there is some value a of a; such that 
S (a) =(= 0, and there is some value b of x such that C(b) =(= 0. 

Set S(x) = Ei(x) + 0\(x), where 25i(a0 is even and Oi(x) 
is odd. Equation (2) becomes 

C(x - y) = C(*)C(y) - ** [Ei(*)^i(y) 

+ El(x}Ol(y) + El(y)01(x) + Oi(*)Oi(y)]. 

Replace a; by — # and y by — y and subtract the equation so 
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obtained from the last equation. Then 

El{x)OM + EMOiix) = 0. 

If Oi(x) = 0, then, as above, C(x) = constant. Discarding 
this trivial case, there is some value â of x such that Oi(a) 41 0. 
Let x = y = à. Then 

2£i(S)Oi(S) = 0 

whence Ei(a) = 0. 

Now let y = â and let x vary; 

Oi(a)Ei(x) = 0 

whence Ei(x) = 0 

and 8(x) is odd and S (ft) = 0. In (2) let y = 0 and x = b. 
Then (7(0) = 1 and hence if y = x in (2), 

CP(x) - ¥S2(x) = 1. 

Replace y by — y in equation (2). Then 

C(x + y) = C(x)C(y) + VS(x)S(j/). 

Now replace x by x + a and 2/ by a in equation (2) ; 

k2S(a)S(x + a) = C(o)C(sr + a) - C(x) 

= C2(a)C(a;) + WC(a)S(fi)S(z) - C(x) 

= [C2(a) - l]C(x) + k2C(a)S(a)S(x) 

= &&(a)C(.z) + k*C(a)S(a)S(x) 

whence S(s + a) = S(a)C(x) + C(a)S(x). 
Finally, replace x by x — y and ?/ by a in equation (2). It 
follows that 
¥S(a)S(x -y) = C(a)C(x - y) - C(x - y - a) 

= C(a)C(x)C(y) - h?C(a)S(x)S(y) 

- C(x)C(y + a) + k*S(x)S(y + a) 

= ¥S(x)[8(y + a) - C(a)S(y)] 

- C(x)[C(y + a) - C(a)C(y)] 

= h?S(a)S(x)C(y) - k2S(a)C(x)S(j/). 
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Therefore 
S(x -y) = S(x)C(y) - C(x)S(y). 

THEOREM I I I . Suppose that S(x) and C(x) satisfy equations 
(1) and (2) simultaneously. If k =f= 0, 

» W = 2fc ^ = "̂  2 ' 

wfore F(x + y) = F(x)F(y). If k = 0, and JS(Z) #= 0, 

S(aj + y) = S(s) + S(2/) and C(z) s 1. 

By interchanging a; and y, we see that S(x) is odd and C(aO 
is even. Replace yhy — y. Then 

S(x+ y) = 8(x)C(y) + C(x)8(y), 

C(x + y) = C{x)C{y) + ¥S(x)S(y). 

The function F(x) = C(x) + kS(x) satisfies the equation 
F(x + y) = F(x)F(y). Now F(- x) = C(x) - kS(x) and 
therefore 

C(x) = i[F(x) + F(- x)] and S(z) = ^[F(z) - F{-z)] 

if k 4= 0. 
If & = 0, we have seen from equation (2) that C(x) = C(0). 

If S(aO + 0, then by equation (1) C(x) # 0. But if y = 0 
in equation (2), C(x) = C(z)C(0) whence if C(6) # 0, 
(7(0) = 1 and (1) becomes S(x — y) =* S(x) — S(y). Replace 
y by - y. Then 8(x + y) = S(a) + S(y). 

§ 3. Equations (3) and (4). 

THEOREM I. /ƒ (7(a0 satisfies equation (3) and is not 
identically zero, then it satisfies equation (4), and, conversely, 
if C{x) satisfies equation (4), then it satisfies equation (3). 

Since, by hypothesis, C(x) + 0, there is some value b of x 
such that C(b) # 0. If in (3) x = b, y = 0, then 0(0) = 1. 
If in (3) y = x, 

C(2x) = 2C2(aO - 1. 

Replace x by # + y and ybyx — y* Then 

2C(z + y)C(a - y) = C(2s) + C(2y) 

= 2C2(*) + 2C2(t/) - 2. 
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Therefore C(x) satisfies equation (4) if it satisfies equation (3) 
and does not vanish identically. 

In (4) let y = x. Then 

C(2x) = 2C\x) - 1. 

Multiply equation (4) by 2 and apply the last equation. 
Then 

2C(x + y)C(x - y) = C(2x) + C(2y). 

Replace 2x by x + y and 2y by x — y. It follows that 

C(x + y) + C(x-y) = 2C(x)C(y), 

that is, C(x) satisfies (3) if it satisfies (4). 
THEOREM II. If C(x) satisfies equation (3) or equation (4), 

then C(x) and S(x) = %[C(x — b) — C(x + b)], where b is so 
chosen, when possible, that C(2b) 4= 1, satisfy equations (1) 
and (2) simultaneously, where, if 

If C(x) s 0 or C(x) = 1 the theorem is obvious. Dis
carding these trivial solutions, it follows that b can be so 
chosen that S(x) # 0. For, if S(x) = 0, C(x + b) = C(a;-&), 
that is, C(2b) = C(0) = 1. But since C(x) + 1, there is 
some value 26 of x such that C(2fr) 4= 1. 

If in (3), x = 0, C ( - y) = C{y). Furthermore 

2S(- x) = C(- x - b) - C(- x+b) 

= C(x +b)- C(x-b) = - 28(x). 
Now 

S(x + y) - S(x -y) = h[C(x + y - b) + C(x - y + b)] 

- $[C(x +y + b) + C(x-y-b)\ 

= C(x)[C(y -b)- C(y + b)} 

= 2C(x)S(y). 

Subtract this equation from the equation obtained from it by 
interchanging x and y. Then 

S(x -y) = 8(x)C(y) - C(x)S(y). 

Since 8(x) + 0 and C(x) is even, then by Theorem I, § 2, 
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S(x) and C(x) satisfy equations (1) and (2) simultaneously, 
where 

But 

<S2(a) = \[C\a -b) + C2(a + b) - 2C(a - b)C(a + b)] 

= l[C(a -b) + C(a + b)f - C(a - b)C(a + b) 

= C^ajCPib) - C\a) - <?(&) + 1 

= [C(a) - IWQ>) - 1]. 

Therefore 

, 2 i ?__ 
* "" C2(b) - 1 ~~ C(2b) - 1 ' 

The converse theorem is proved by adding C(x + y) and 
C(x — y), given by (2), from which it follows that C(x) satis
fies (3), whence if C(x) ^ 0 it satisfies (4). 

§ 4. The Equation (5): S(x + y)S(x - y) = S2(x) - S2(y). 

Discarding the trivial solution 8(x) = 0, suppose a is a 
value of x for which 8(a) =t= 0. Since S(x)/m (where m is any 
constant different from zero) satisfies equation (5), we may 
suppose that 8(a) = 1. 

THEOREM. If S(x) satisfies equation (5), then S(x) and 
C(x) = i[S(x + a) — S(x — a)] satisfy equations (1) and (2) 
simultaneously, where k2 = C2(a) — 1. 

Interchange x and y. It follows that S(x + y)S(y — x) 
= — £(# + 2/)£(£ — y). Replace x + y by a and # — y by #. 
Then S(- x) = - S(x). Now 

2C(- aO = /S(- x + a) - S ( - x - a) 

= - S(x- a) + S(x + a) = 2C(aO. 

Moreover C(0) = 1. From equation (5) it readily follows 
that 

Siz + y) = Siz + yWa) = * ( * ± f ^ ) - S 2 ( ^ ± p - a ) 

and 

S(x-y) = Six - y)S(a) = ff(*=|±f ) _ S * ( ^ p - a ) . 



1920. ] CERTAIN RELATED FUNCTIONAL EQUATIONS. 309 

Therefore 

S(x + y) + S(x -y) = S(x)8(y + a) - S(x)S(y - a) 

= 2S(x)C(y). 

Interchange x and y and subtract the equation thus obtained 
from the last equation. Then 

S(z - y) = S(x)C(y) - C(x)S(y). 

The hypothesis of Theorem I, § 2, is fulfilled. Since C(x) is 
even the functions S(x) and C(x) satisfy equations (1) and (2) 
simultaneously. 

To prove the converse theorem when S(x) 4s 0, let us 
observe that if y = x in (2), C2(x) — k2S2(x) = 1, whence 

S(x + y)S(z - y) = S2(z)C%) - C2(aOS2(2/) 

= S2(z) - 5%), 

that is, S (x) satisfies equation (5). 

§ 5. Equation (6). 

THEOREM. If g(x) and S(x) satisfy equation (6), then S(x) 
satisfies equation (5) and g(x) can be so chosen that (by the 
addition of a constant) g(2x) = 2k2S2(x) + 1. 

If S(x) = 0, g(2x) = ^(0). Setting aside this trivial solu
tion, it may be assumed that S (a) =(= 0. In fact, if S (a) = m, 
a new value of k may be chosen so that S (a) = 1. If x = a 
and y = - #, S ( - y) = -_/S(*/) and S(0_) = 0. If a = 0, 
then gr(— I/) = ^(2/). Since g(x) = g(x) + g(0) — 1 also satis
fies (6), we may assume g(0) = 1. If y = x, then 

g(2x) = 2k282(x) + 1. 

Now in (6) replace x by x + y and ybyx — y. Then 

^+ 2 / )S (a : - 2 / ) = S2(^)-S%), 

that is, $(#) satisfies (5). 

§ 6. Equation (7). 

THEOREM. Suppose the functions fix) and C(x) satisfy 
equation (7) and f(x) 4s 0. If f(x) is not an odd function, its 
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even component is a constant multiple of C(x), and C(x) satisfies 
equation (8) and is not identically zero. If fix) is not an even 
function, C(x) and the odd component S(x) of fix) satisfy equa
tions (1) and (2), where 

C\a) - 1 
ffl(a) ' ^ + 

If ƒ(#) + 0, we may assume that f (a) = 1. Let x = a and 
replace yby — y. Then C(— 2/) = 0(2/). Let y = 0, a; = a. 
Then C(0) = 1. Hence C(s)# + 0. Let ƒ (a) = Ci(x) + Six) 
where CiO*0 is even and Six) is odd. Then 

[dix + y) + d(x - y)] + [Six + y) + S (a - 2/)] 

= 2C1(x)C(y) + 2S(x)C(y). 

Add this equation to the equation obtained from it by replacing 
x by — x and yby — y. Then 

dix + y) + d(x - y) = 2C1(x)C(3f). 
Interchanging a and 2/, it is obvious that Ci(x)C(y) = Ci(y)C(x). 
If 1/ = 0, Ci(a:) = kiC(x) where &i is a constant. Substi
tuting this value of C\(x), it is at once apparent that C(x) 
satisfies (3), if h * 0. If J* = 0, d(x) = 0 and/(a) = Six). 

But 
S(a + 2/) + S(x - 2/) = 2S(x)C(y). 

Interchanging x and 2/ and subtracting the equation thus 
obtained from the last equation, 

S(x - y) = Six)Ciy) - C(*)S(y). 

Therefore, by Theorem I, § 2, Six) and C(#) satisfy (1) and 
(2) simultaneously. 

§ 7. Equation (8). 
THEOREM, /ƒ the functions Six) and Cix) satisfy equation 

(8) and Six) 4s #(0), they satisfy equations (1) and (2) simul
taneously, where 

If £(#) =|= £(0), (7(#) 4s 0 and there is a value b of a such 
that CQ)) 4= 0. Let a: = 6 and replace y by — y. Then 
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£(— y) = — 8{y), and £(0) = 0. Let y = a and replace 
x by — x, where a is chosen so that S(a) =|= 0. Then C(— #) 
= C(aO« If 2/ = a and a: = 0, C(0) = 1. Subtracting equa
tion (8) from the equation obtained from it by interchanging 
x and y, we have (1), whence by Theorem I, § 2, 8(x) and C(x) 
satisfy (1) and (2) simultaneously. 

§ 8. A General Equation. 

The equation proposed for consideration is 

(9) offi(x + y)F(x-y) = P<p(iix) + yf(w) + S, a, p, y # 0. 

If x = y = 0, 
aF2(0) = M 0 ) + 7^(0) + S. 

Now if y = 0 

fo(px) = aF\x) + M 0 ) - aF*(0) 
and if a? = 0 

7*(w) = *F(y)F{- y) + 71KO) - c^2(0). 

Therefore 

*•(* + „)*•(* - 2/) = TO + * W ( - 2/) - TO-
CASE I. ^(0) = 0. 
Let y = x. Then F(x)F(- x) = - P(x) and ^(a) satis

fies equation (5). 
CASE II. F(0) = h 4= 0. 
Let jP(a:) = &C(#) + S(x) where (7(#) is even and 8(x) is 

odd. Now 

k2C(x + y)C(x - 2/) + S(a? + y)S(x - 2/) 

+ kC(x + y)S(x -y) + kC(x - y)S(x + y) 

= k2G\x) + 2kC(x)S(x) + S2(x) + k2C\y) - S2(y) - k2. 

Subtract from this equation the equation obtained by replacing 
x by — x and y by — y. Then 

C(x + y)S(x - 2/) + 0(* - y)S(x + y) = 2C(aOS(aO. 

Let y = x. Then 

S(2s) = 2C(aOS(aO = C(s + y)S(x - 2/) + CO* - y)S(a + y). 
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Replace 2x by x — y and 2y by x + 2/. 

S(s - y) - S(a)C(y) - C(a)S(y). 

If y is replaced by — y, 

S(x+y) = S(x)C(y) + C(x)S(y). 
Therefore 

S2(z + y) - S2(x - 2/) = 4S(x)C(x)S{jj)C{y) 

= i8(2»)S(?»). 

Replace 2a; by a; + 2/ and 2ybyx — y. Then 

^ + t / ) S ( o : ~ 2 / ) = S2W-S2(2/) . 

Substituting the relations found, it follows that 

C(x + y)C(x - y) = C2(z) + C%) - 1, 

that is, the odd component of F{x) satisfies (5) while the even 
component (except for the factor F(0)) satisfies (4). 

STATE UNIVERSITY OF IOWA, 
December, 1919. 

THE EQUATION ds2 = dx2 + dy2 + dz2. 

BY PROFESSOR E. T. BELL. 

1. THIS equation,* being of geometrical importance, ha& 
attracted several writers, including Serret (1847), Darboux 
(1873, 1887), de Montcheuil (1905), Salkowski (1909), Eisen-
hart (1911), and Pell (1918). The simple parametric solution 
of de Montcheuil, which is the starting point of considerable 
work in differential geometry, was not noticed by Serret or 
Darboux. It is somewhat remarkable that the latter over
looked this solution, as he himself makes use (Surfaces, 

* Full references to earlier writers are given by Eisenhart, Annals of 
Math. (2), vol. 13 (1911), pp. 17-35. Pell's paper will be found ibid. (2), 
vol. 20, pp. 142-148. The substance of the present note, with the exception 
of section 8, is from an unpublished A.M. thesis, presented to the Uni
versity of Washington in 1908, dealing with the general algebraic problems 
on which solutions of this kind depend. I wish to emphasize that § 8 
was written only after I had read PelFs paper. 


