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where the last reduction was made by interchanging integra­
tions in (23) and by comparing the result with (22). The 
interchange was permissible* because of our present hypothe­
ses. Since [zi(x') — Zi(x)] is the ith Fourier coefficient of 
the left side of (20),, we have completed the proof of the 
theorem. 

In a later paper the author will consider applications of the 
present results in the theory of functionals whose arguments 
are summable functions. 
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1. I T is known that a necessary and sufficient condition 
that a surface of two dimensions in hyperspace be minimal 
is the vanishing of the vector mean curvature.f I t is the 
purpose of this note to show that mean curvature of a variety 
Vm in a space of n dimensions can be defined in the same way 
and that its vanishing is a necessary and sufficient condition 
that Vm be minimal. I shall use the absolute calculus, since 
one of its chief merits is the ease with which invariants can 
be written down. In fact the very form of an expression 
shows whether or not it is invariant. Enough vector analysis 
is used to simplify the form of the expressions. 

The variety Vm can be written vectorially in the form 

y = y(xi, x2, • • • , xm). 
Then 

m 

ds2 = dy-dy = ^ arsdxrdxs. 
i 

If we write 

* Cf. de la Vallée Poussin, loc. cit., p. 53. 
fWilson and Moore, " Differential geometry of two-dimensional surfaces 

in hyperspace," Proceedings of the Amer. Acad., vol. 52 (1916). 
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we see at once that 
(1) ars = yr-y«. 
Hence we may write 

dy-dy = Hyr'ysdxrdxs. 

Differentiating (1) covariantly with respect to the first funda­
mental form, 
(2) <p = 2arsdxrdxs, 

remembering that the first covariant derivative of the coeffi­
cients of the fundamental form is zero, we obtain 

yrt-ys + yr-yst = 0, 

and since this relation holds for any r, s, t, we may write 

yts-yr+ yrysr = 0, 

Vrs-yt + yr-yst = 0. 

The vector y is a function of xi, x2, • • •, xm. Since the second 
covariant derivative of a function is symmetric, we have 

From the last four equations we have 

yr-yst = 0, r, s, t = 1, 2, • •• m. 

These equations show that yst is perpendicular to yr, and it is 
therefore perpendicular also to the tangent m-space of Vm. 

Since the yrs are vectors lying in the normal space, we can ex­
press them as linear functions of mutually perpendicular vectors 
in that space, which is of n — m dimensions. Thus we find 

(3) yrs = bilrsZl + b2JrsZ2 + ' • • + b 
(n—w) /rs%n—m» 

We have also the following relations : 

(4) Zi-zj = 0, (i + j); Zi-Zi = 1, zry% = 0. 

Differentiating these covariantly, we have 

(5) Ziia'Zj + Zi'Zj/s = 0 ; Zi/r-ys + Zi-yrs = 0 . 

Then, multiplying (3) through by z%, we have 

Z%*yrs ==: Oi/rs = = %i/r'ys» 
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2. The Second Fundamental Forms.—The coefficients bi/rs 

are generalizations of the coefficients of the second fundamental 
form of a surface in n-space.* They may be taken as the 
coefficients of n — m fundamental forms which we can combine 
into a vector fundamental form 

(6) \f/ = %yrsdxrdxs. 

We now consider the m systems of curves 

X / r ) = = ë ' (i=l,2, ..-m) 
where dsi is the element of arc along the curve X*-. Multiplying 
by the proper factor, we can make the quantities X; satisfy 
the relation 

2rXi(r)X;/r = 1. 

We shall now assume that this relation is satisfied. Such 
systems are called unit systems. The X's are called the 
coordinates of the congruence. If the congruences are ortho­
gonal, the coordinates satisfy the relations 

2X t-/rX/r) = €ij, 

where eu = 0, if k #= I, ejck = 1. In terms of the coordinates, 
we can write the coefficients of the first fundamental form 
as follows:! 

ars ^i^ilr^ils* 

The coefficients of the second fundamental form can be written 
as follows: 

yrs
 = = 2J%% j iûijhilrhjls, 

where co# is a vector. The invariant vectors 

(7) fc = SrX/rVr = 2A-/r2/(r) 

are mutually orthogonal unit vectors tangent to the curves 
whose covariant coordinates are X*/r. Solving these equations 
for yr and y(r) we find 

yr = ZAXi/r, y™ = 2fcXi<r>. 

* See Wilson and Moore, loc. cit., p. 308. 
t Wilson and Moore, loc. cit., §13, p. 289, and §§26, 27, pp. 310-311. 
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We now introduce Ricci's coefficients of rotation* 

y hkl = 2r,s}<h/rs\k(r)^l(8)> 

Solving these equations for X/>/rs, we find 

( 8 ) Afe/rs = = ̂ i^yhii^ilr^jls* 

Substitution of this value in the covariant derivative of (7) 
gives 
(9) %Ur = 2jù)ij\j/r + 2y, lyijlkl/rÇj. 

The condition that the congruence X; is a congruence of 
geodesicsf is 

yj a == v» 

3. The Invariants oou. The curvature of a curve of the 
congruence X»- which passes through a given point is obtained 
by differentiating & with respect to the arc length Si. Thus 
we find 

u~dsr^rdxr'dSi-^
i,;ki > 

which, by (9), reduces to 

The formula shows that the invariant vector con is the normal 
component of the curvature of the curve of the congruence in 
question. The tangential component of the curvature is 

Y = 2jyji£j. 

The invariant y is then the geodesic curvature, J since the 
curvature of the projection on the tangential space is the 
projection of the curvature. § If the congruence X* is geodesic, 
yja — 0. Hence the curvature of a geodesic is directed along 
the normal and is equal to con. 

An important invariant connected with any two differential 
forms is 

— %a(r8)yrs = ^arsy
(r8) = ^ijkrs C0^X;/r>W/sXfc(r)X/b(8) = ScOfcfc. 

* Ricci and Levi-Civita, "Méthodes de calcul différentiel absolu," etc., 
Math. Annalen, vol. 54, p . 148. 

t Ricci and Levi-Civita, loc. cit., p . 148. 
t Ricci and Levi-Civita, loc. cit., p . 154. 
§ Wilson and Moore, loc. cit., p . 320. 
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Hence the sum of the normal curvature vectors of m mutually 
orthogonal curves on the spread is constant. We shall define 
the mean curvature* h by the relation 

mh — Sco«. 

4. Minimal Varieties.—Applying the preceding formulas, 
we can now easily derive the condition that the volume of a 
variety of m dimensions bounded by a variety of m — 1 
dimensions, chosen arbitrarily, shall be a minimum. The 
vector element of volume is 

Pdxidx2 - - - dxm = -r— X ~— X • • • X ~— dxi dx2 • • • dxm. 
OXi ÖX2 OXm 

The condition for a minimum is 

8 C(P-P)*dx!dx2 --dxm = f^èidV = fôP-MdV = 0, 

where M is the unit tangent n-space 

Now 

OXi OX2 OXm OXi OX2 OXm 

+ ---+PLxPLx---xdX 
OXi ÖX2 OXm 

The condition for a minimum then becomes the vanishing of 
n vector integrals. One of these integrals, after an integration 
by parts and the omission of the part which vanishes at both 
limits, becomes 

J \dXi ÖX2 OXmJ 

= " fsyx£-(PLxpLx---xpL-M)dV-
J a 0x1 \ 0x2 oxs dxm ) 

*This is the direct generalization of mean curvature as used in the 
theory of surfaces. There is, however, a mean curvature definable in 
terms of the first fundamental form, and this is the one used by Einstein. 
The definition used in this note depends on the space in which Vm lies. 
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The complete condition then becomes 

fôvX\±.(ÈLx ...XÈL.M\_±.(È!LXÈL 
J \_dx1\dx2 dxm J dx2\dxi dxs 

dxm J dxm\dxi dxm-i ) \ 

Since by is arbitrary, 

JL(Ê!LX!!!LX... xÈL.M\-A-(ÊLx<bLx ... 
d#i\d#2 dxz dxm J dx2 \ dxi dxz 

X^-M)+.-.±£-(pLx---x/y--M) = 0, oxm ) dxm\dxi oxm-i J 

which on multiplying out reduces to 

0X2 oxz oxm ox\ 0x1 dx$ dxm 0X2 

+ • •. = 0. 
Now substituting 

— = yr = ZkZkXk/r, 

M = £ 1 X J2 X • • • X £n, 

ff = H x f 2 > < '•• x f*+€ix|^x&x---x&+•••, 
and using (9), the condition for a minimum becomes 

(S»C0ii) I X»7r I = 0. 

The determinant | X*/r | is equal to Va, where a is the deter­
minant of the first fundamental form, for from the expression 
ar8 = Ŝ -Xi/rXzVs we have 

a = I ars \ = |2iX//rXi/a| = | X̂ /r | * | X»/« | = | X̂ /r | . 

Hence the condition for a minimum is Xoou = 0. 
The vanishing of the mean curvature vector is a necessary and 

sufficient condition that the variety he minimal. This is the 
same condition as that for a 2-surface in hyperspace. 
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