THE EINSTEIN SOLAR FIELD.

by professor luther pfahler eisenhart.
(Read before the American Mathematical Society April 23, 1921.)
The Schwarzschild form of the linear element of the Einstein field of gravitation of a mass m at rest with respect to the space-time frame of reference is

$$
\begin{equation*}
d s^{2}=\left(1-\frac{2 m}{u_{1}}\right) d t^{2}-\frac{u_{1}}{u_{1}-2 m} d u_{1}^{2}-u_{1}^{2}\left(d u_{2}^{2}+\sin ^{2} u_{2} d u_{3}^{2}\right) \tag{1}
\end{equation*}
$$

where t is the coordinate of time, and u_{1}, u_{2}, u_{3} are space coordinates. Since the coefficients in (1) are independent of t, the particle moves in the 3 -space S_{3} whose linear element is

$$
\begin{equation*}
d s_{0}^{2}=\frac{u_{1}}{u_{1}-2 m} d u_{1}^{2}+u_{1}^{2}\left(d u_{2}^{2}+\sin ^{2} u_{2} d u_{3}^{2}\right) \tag{2}
\end{equation*}
$$

If we put

$$
\begin{array}{ll}
x_{1}=u_{1} \sin u_{2} \cos u_{3}, & x_{2}=u_{1} \sin u_{2} \sin u_{3}, \\
x_{3}=u_{1} \cos u_{2}, & x_{4}=4 m \sqrt{\frac{u_{1}}{2 m}-1} \tag{3}
\end{array}
$$

we have

$$
\begin{equation*}
d s_{0}^{2}=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+d x_{4}^{2} . \tag{4}
\end{equation*}
$$

Hence S_{3} is immersed in the euclidean space of four dimensions, S_{4}, whose rectangular coordinates are $x_{i}(i=1, \cdots, 4)$.* Moreover, as follows from (3), S_{3} is the quartic variety defined by

$$
\begin{equation*}
x_{1}^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}=\left(\frac{x_{4}{ }^{2}}{8 m}+2 m\right) \tag{5}
\end{equation*}
$$

We shall show that equations (3) define the only threespread with the linear element (2) in euclidean four-space by making use of the following theorem of Bianchi: \dagger In euclidean n-space ($n>3$) every hypersurface is not deformable unless at least $n-2$ of the principal radii of curvature are infinite.

[^0]In fact we show that all of the principal radii of curvature of (5) are finite. If X_{i} denote the direction-cosines of the normal to (5), that is

$$
\sum_{i=1}^{4} X_{i} \frac{\partial x_{i}}{\partial u_{j}}=0(j=1,2,3), \quad \sum X_{i}^{2}=1
$$

then

$$
\begin{array}{ll}
X_{1}=\sqrt{\frac{2 m}{u_{1}}} \sin u_{2} \cos u_{3}, & X_{2}=\sqrt{\frac{2 m}{u_{1}}} \sin u_{2} \sin u_{3} \\
X_{3}=\sqrt{\frac{2 m}{u_{1}}} \cos u_{2}, & X_{4}=-\sqrt{1-\frac{2 m}{u_{1}}}
\end{array}
$$

If we define functions $\Omega_{r s}$ by

$$
\Omega_{r s}=-\sum_{i} \frac{\partial X_{i}}{\partial u_{r}} \frac{\partial x_{i}}{\partial u_{s}}
$$

we find $\Omega_{r s}=0(r \neq s)$ and
$\Omega_{11}=\frac{1}{u_{1}-2 m} \sqrt{\frac{m}{2 u_{1}}}, \quad \Omega_{22}=-\sqrt{2 m u_{1}}, \quad \Omega_{33}=-\sqrt{2 m u_{1}} \sin ^{2} u_{2}$.
The principal radii of curvature are given by*

$$
\begin{gathered}
\frac{1}{R_{1}}=\frac{\Omega_{11}}{\frac{u_{1}}{u_{1}-2 m}}=\sqrt{\frac{m}{2 u_{1}^{3}}}, \quad \frac{1}{R_{2}}=\frac{\Omega_{22}}{u_{1}^{2}}=-\sqrt{\frac{2 m}{u_{1}^{3}}}, \\
\frac{1}{R_{3}}=\frac{\Omega_{33}}{u_{1}{ }^{2} \sin ^{2} u_{2}}=\sqrt{\frac{2 m}{u_{1}^{3}}},
\end{gathered}
$$

which are finite since $u_{1} \neq 0$.
In accordance with the Einstein theory the world-line of a particle in the gravitational field is a geodesic of the space with the linear element (1), that is a curve along which $\boldsymbol{\int} d s$ is stationary; and the world-line of a ray of light is a curve for which $d s=0$ and $\int d t$ is stationary. In each case the frame of reference can be so chosen that a particular path satisfies the condition $u_{2}=\pi / 2 . \dagger$ From (3) it follows that for this path $x_{3}=0$, and hence the path considered by astronomers is the projection upon the plane $x_{3}=0$ of a curve on the surface

$$
x_{1}^{2}+x_{2}^{2}=\left(\frac{x_{4}^{2}}{8 m}+2 m\right)^{2}
$$

[^1]This is the surface of revolution of a parabola of latus rectum $8 m$ about its directrix. A similar result was obtained by Flamm* who considered the surface, in euclidean three-space, for which the linear element is given by (2) for $u_{2}=\pi / 2$.

Princeton University, April 16, 1921.

A COVARIANT OF THREE CIRCLES.

```
BY PROFESSOR A. B. COBLE.
```

(Read before the American Mathematical Society April 23, 1921.)
Dr. J. L. Walsh \dagger has stated the following theorem.
Theorem. If the double ratio, $\left(z_{1}, z_{3} \mid z_{2}, z\right)$, of the four points z_{1}, z_{2}, z_{3}, z in the complex plane is a real number λ, then as the points z_{1}, z_{2}, z_{3} run over the circles C_{1}, C_{2}, C_{3} (and their interiors) respectively, the locus of z is a circle (and its interior).

This locus is evidently a covariant, under the inversive group, of the three given circles, which is rational in λ. We find in (8) its equation and incidentally prove the theorem.

In conjugate coordinates z, \bar{z}, a circle is

$$
C_{1}(z)=a_{1} z \bar{z}+\alpha_{1} z+\bar{\alpha}_{1} \bar{z}+b_{1}=0
$$

where a_{1}, b_{1} are real, and $\alpha_{1}, \bar{\alpha}_{1}$ are conjugate imaginary. The bilinear invariant of two circles $C_{1}(z), C_{2}(z)$ is

$$
\left[C_{1}, C_{2}\right]=\alpha_{1} \bar{\alpha}_{2}+\alpha_{2} \bar{\alpha}_{1}-a_{1} b_{2}-a_{2} b_{1}
$$

It vanishes when the two circles are orthogonal. When they coincide it becomes $\left[C_{1} C_{1}\right]=2\left(\alpha_{1} \bar{\alpha}_{1}-a_{1} b_{1}\right)$. This vanishes when C_{1} is a point circle, i.e. one whose equation is

$$
\begin{equation*}
P_{z_{i}}(z)=\left(z-z_{i}\right)\left(\bar{z}-\bar{z}_{i}\right)=0 \tag{1}
\end{equation*}
$$

It is easily verified that
$\left[C_{1}, P_{z_{i}}(z)\right]=-C_{1}\left(z_{i}\right) ; \quad\left[P_{z_{i}}(z), P_{z_{k}}(z)\right]=-P_{z_{i}}\left(z_{k}\right)=-P_{z_{k}}\left(z_{i}\right)$.
The two point circles of the pencil $C(z)+\mu K(z)=0$ are determined by

$$
[C+\mu K, C+\mu K]=[C, C]+2 \mu[C K]+\mu^{2}[K K]=0
$$

[^2]
[^0]: * Cf. Kasner, American Journal of Mathematics, vol. 43, p. 132 (April, 1921).
 \dagger Lezioni, vol. 1, p. 467.

[^1]: * Bianchi, l.c., pp. 368, 472.
 \dagger Cf. Eddington, Report on the Relativity Theory of Gravitation, p. 49.

[^2]: * Physik. Zeitschr., vol. 17 (1916), p. 449.
 \dagger Transactions Amer. Math. Society, vol. 22 (1921), p. 101. The geometric proof of this theorem given by Dr. Walsh is very complicated. The method of proof followed here is considered by Dr. Walsh (loc. cit.,

