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ALGEBRAIC GUIDES TO TRANSCENDENTAL 
PROBLEMS* 

BY R. D . CARMICHAEL 

1. Introduction and Historical Sketch. Up to the present 
time algebraic guides to transcendental problems have been 
employed extensively through only a small part of the range 
of subject matter to which they are so adapted as to yield 
important characteristic values in suggested theorems and in 
methods of proving them. This interaction between algebraic 
and transcendental analysis has attracted greater attention 
in the theory of integral equations than elsewhere. The rela­
tion between the theory of integral and of algebraic equations 
seems to have been first noticed by Volterra, who pointed out 
(TORINO ATTI, 1896, pp. 311-323) that a Volterra integral 
equation of the first kind may be regarded as in a certain 
sense a limiting form of a system of n linear algebraic equations 
in n variables as n becomes infinite. I t is clear from Volterra's 
remarks in 1896 that the same is true of the Volterra equation 
of the second kind, though this fact was not then mentioned 
explicitly. In 1913 in his Leçons sur les Equations Intégrales 
et les Equations Intégro-diffêrentielles, Volterra brings out in 
detail (pp. 30-33, 40-52) the connection between the algebraic 
theory and his equation of the second kind, and less fully 
(pp. 56 ff.) the connection between the algebraic theory and 
his equation of the first kind. He indicates (pp. 71 ff.) 
extensions of the method to systems of integral equations and 
to equations and systems with multiple integrals, and also 
(pp. 138 ff.) to the theory of permutable functions. (See also 
the preface and pp. 33, 102, 117 for remarks on the history of 
the subject and for references.) We shall set forth the char­
acter of the method by a brief indication of the nature of 
Volterra's treatment of the equation of the second kind. 

* Address as retiring Chairman of the Chicago Section of this Society, 
Toronto, December 27, 1921. Read for the author by Professor Arnold 
Dresden. 
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If in the equation 
<p(x) = u(x) + SoK(x, i)u(£)dï 

we replace the integral by the limit to which it is equal by 
definition, we have the relation 

n 

<p(x) = u{x) + lim J2 K(x> &M&X& — &-i)> 
n-*co i— 1 

where the points £o = 0, £i, £2, • • •, %n-i, £n = # of the interval 
(0, x) are so distributed that the greatest difference & — &_! 
approaches zero with lfn. Approximating to the latter 
equation is the following: 

w - l 

<P(X) = u(x) + J2 K(x> &M&X& ~ &-i); 

and in particular the system 
. 9 - 1 

<p(£a) = u(£a) + Z) a8iu($i), (s = 1, 2, • • -, w), 
i = l 

where asi = 2f(f8, &X& — &-i)« Now this algebraic system 
has a solution in the form 

5 - 1 

u (&) = «Kfa) + Z) Caî (?*), 0 = 1, 2, • • -, n); 
i = l 

and reciprocally the former system affords the solution of the 
latter for the <£>(&) in terms of the ufa). By analyzing these 
two systems Volterra obtains several fundamental relations 
between them. Then he proceeds heuristically to the limiting 
forms of these relations after the manner of forming an integral 
as the limit of a sum, thus obtaining the main principles upon 
which rests his solution of the given integral equation—these 
principles then being established de novo by methods suggested 
by the algebraic analysis. 

The methods of Volterra may be extended to the case of the 
Fredholm equation; but an added difficulty arises in the new 
situation from the fact that the basic algebraic system has 
now a general determinant depending upon the kernel K 
rather than the much simpler determinants of the Volterra 
treatment. It was Fredholm's achievement to see how the 
method of Volterra could be extended so as to pass from the 
solution of a system of linear algebraic equations to the solution 
of the Fredholm integral equation of the second kind. Again 
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in the case of Fredholm, the method was used merely as a 
heuristic guide for discovering the facts and suitable methods 
for their proof. With Hilbert arose for integral equations a 
marked extension of the method through his plan of deducing 
the results by limiting processes from algebraic propositions 
as the number of variables becomes infinite. 

But the better-known applications to integral equations do 
not afford the earliest important uses of algebraic guides to 
transcendental problems. A limiting process having certain 
points in common with that of Volterra was employed by 
Cauchy in his proof of the existence of integrals of a system of 
differential equations, and has been preserved in the lectures 
of Moigno published in 1844. Considerably simplified and 
clarified by Lipschitz it stands today under the name of the 
Cauchy-Lipschitz method (with the extensions of Picard 
and Painlevé) as one of the principal means for establishing 
the existence of integrals of differential equations. (See, for 
instance, Goursat-Hedrick, Mathematical Analysis, vol. 2, 
part 2, pp. 68-74.) 

In some respects a closer but still a rather remote analogy 
with the work of Volterra is afforded by the unpublished 
method by which Sturm was led to many of the results of his 
great memoirs of 1836. On page 186 of the first volume of 
LIOUVILLE'S JOURNAL, Sturm tells us that it was from the 
solutions of the difference equation 

LiUi+i + MiUi + NiUi-i = 0, (i = 0, 1, 2, • • •), 

which is nothing more than a somewhat disguised special form 
of a system of linear algebraic equations, that he was led to 
the subject of his first memoir of 1836, the memoir in which his 
more characteristic results for differential equations are to be 
found; and that the method by which the latter were obtained 
from the former was one of passing by a limiting process from 
finite to infinitely small differences. He adds that he had 
also found for the difference equation properties which are not 
susceptible of being carried over to differential equations. 
From these remarks, which he seems never to have elaborated 
anywhere in his published writings, it is clear that Sturm was 
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led to many of his classic results by a fundamental algebraic 
guide to the transcendental problems treated. 

If one has in mind the suggestive remark of Sturm and the 
limiting process of Cauchy's existence proof, there is no longer 
any difficulty in carrying through the limiting process from 
the difference to the differential equation and of obtaining 
properties of the solution of the latter directly from those of 
the former. This was done in an interesting case by Porter in 
1902 (ANNALS OF MATHEMATICS (2), vol. 3 (1902), pp. 55-70) 
more than two years before Hubert in 1904 took a similar step 
for integral equations. If we remember that the difference 
equations used in this analysis are but condensed forms of cer­
tain systems of linear algebraic equations, we shall see that the 
processes which we have usually associated principally with 
the theory of integral equations were used heuristically in 
the theory of differential equations long before they were 
similarly employed for integral equations, and that they were 
used some years earlier in the former than in the latter in the 
way of a rigorous passage to the limit. 

In Bocher's Fifth International Congress address and in his 
Les Méthodes de Sturm (see especially chapter 2, pp. 14-42) 
there is brought out more clearly and more fully than by any 
of his predecessors the intimate relation tha t exists between 
the theory of systems of linear algebraic equations and dif­
ferential equations, particularly with boundary conditions. 
Several important theorems for differential systems are ob­
tained as immediate analogues of well known fundamental 
theorems for algebraic systems, and several intimately related 
aspects of the two problems are brought out forcibly by the 
statement of theorems common to the two and identical in 
their principal characteristics. 

I t will be observed that all the problems treated in these 
cases (with the exception of that of Cauchy) are linear in 
character. This is not accidental; it arises from two facts. 
Many of the profound phenomena of nature are subject to 
laws whose expression in mathematical form gives rise to 
fundamental linear problems of several kinds. Logically the 
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simplest and historically the first to be treated in detail of 
the linear problems of pure mathematics are those having to 
do with systems of linear algebraic equations. And these 
hold the place of greatest importance, both on account of their 
simplicity and relatively complete development and on account 
of their suggestiveness in leading the way to transcendental 
linear problems which emerge from a direct consideration of 
the natural limiting cases of algebraic systems under the 
guidance of current problems of transcendental analysis. 

My principal purpose in this address is to discuss two types 
of algebraic theorems and the transcendental problems to 
whose solution they lead the way. In the one class we shall 
have oscillation and comparison theorems, and in the other 
theorems of expansion in orthogonal functions and their 
generalizations. To one acquainted with the relevant theory 
of differential and integral equations, it is clear that there is 
already at hand a large body of doctrine having to do with 
certain transcendental problems in each of these domains, 
namely, the classic oscillation and comparison theorems of 
Sturm for differential equations of the second order, the 
Sturm-Liouville expansions, expansions by means of the bi-
orthogonal functions arising from BirkhofFs theory of differ­
ential systems and their adjoints, and the expansion theorems 
arising in the theory of integral equations. 

The principal algebraic theorems to which I shall direct 
your attention were conceived in the first place by considering 
what properties of certain approximating algebraic systems 
correspond to the properties already established for the tran­
scendental problems which have been treated. I t was not 
difficult to arrive at the corresponding theorems for the special 
algebraic systems which were involved in certain of these 
cases; and the theorems once in hand for the special systems 
were readily extended to fairly general classes of algebraic 
systems. With this much accomplished, one is in possession 
of algebraic facts suitable to serve as a guide to a large class 
of transcendental problems having certain analogies with the 
problems which suggested the algebraic theorems in the first 
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place. The interaction thus set up between the algebraic and 
the transcendental problems has a useful power of leading 
forward to the discovery of important results. 

In order to have clearly in mind the nature of the connection 
between a differential equation and a system of algebraic 
equations, we shall set up the relation in one of the simplest 
important cases. A differential equation, with or without 
boundary conditions, may be realized in an infinite number of 
ways as the limiting form of an algebraic system, so that there 
is always room for choice in setting up the system, and in fact 
need for care that it shall be done in a convenient way. In 
connection with the equation of second order 

u"(x) + <p(x)u(x) — 0, 

it is often convenient to employ the approximating equation 

u(x + 25) - 2u{x + 5) + u{x) , 
^ \- <p(x + ô)u(x + 5) = 0, 

which reduces to the differential equation when 5 approaches 
zero, provided that u and <p are subject to appropriate condi­
tions. This equation reduces to 

u{x) + {ô2cp(x + 5) - 2}u{x + 5) + u(x + 25) = 0. 
If we are concerned with the original differential equation 
when x ranges over an interval (ab), we may take 5 = (b — a)/n 
where n is an integer. Then, giving to x in the last equation 
the values a, a + 5, a + 25, • • -, a + (n — 2)5, we have an 
algebraic system of n — 1 equations of the form 

u(a + id) + aiuia + i + 15) + u{a + i + 25) = 0, 
( i = 0 , 1, . . . , 7 i - 2 ) , 

from which to find the n + 1 unknown quantities u(a), 
u(a + 5 ) , • • •, u(a + nô). From properties of the solutions 
of this algebraic system one can pass back heuristically to 
properties of the solutions of the differential equation and 
then can establish these properties by a de novo argument 
suggested by the methods for dealing with the algebraic 
system. This special case may suggest certain principal 
characteristics of the general method as applied to differential 
equations. 
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The two instances given, the one just developed and that of 
Volterra, do not by themselves afford an adequate suggestion 
of the range of applicability of the method. From these 
cases one can see in part how it works for integral equations 
and ordinary differential equations. In a similar way it 
may be brought to bear upon the theory of difference and q-
difference equations, both ordinary and partial, and the theory 
of partial differential equations. Moreover, if we pass from 
any of these cases by another limiting process of Volterra to 
such limiting forms as his linear integro-differential equations, 
or to linear integro-difference and integro-g-difference equa­
tions, or to various linear systems combining the properties 
of these mentioned types of transcendental equations, we 
shall be able to look upon any one of these directly as a limiting 
case of an algebraic system under some appropriate method 
of passing to the limit. In fact, it is probable that certain 
essential elements of these algebraic guides to transcendental 
problems can be realized in the case of any transcendental 
linear problem to which one may be led naturally. 

2. Algebraic Oscillation and Comparison Theorems. Let us 
consider a graphical representation of the set of real constants 
U\, u2, • • -, un obtained in the following manner (cf. M. B. 
Porter, ANNALS OF MATHEMATICS (2), vol. 3 (1901), p. 56)* 

On any convenient horizontal straight line segment, say the 
points s such that a ^ s ^ b, let us erect n perpendiculars, two 
of which are at the ends of the segment, while the other n — 2 
are evenly or unevenly distributed on the interior of the seg­
ment. Let these be marked from left to right by the numbers 
1, 2, • • •, n; and consider them as analogous to the n coordinate 
axes of a space of n dimensions. Let the greatest distance 
between two consecutive axes be called the norm of the 
system of axes. On the -ith axis let us take a point at a 
distance | Ui | from the original segment, and above it or below 
it according as ui is positive or negative. Having done this 
for each value i of the set 1, 2, • • -, n, join by straight line 
segments the point on each axis but the last to the point on 
the adjacent axis to the right. We thus obtain a broken line 
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which we shall call the graphic representation of the point 
(u>i, u2, • • •, un) in space of n dimensions, or of the set of con­
stants Ui, U2, ' • •, Un. 

This broken line may be taken also as the graph of a con­
tinuous function u(s) of the real variable s on the interval 
a ^ s ^àb. We shall say that this function u(s) has been 
obtained from the set of constants U\, u2, • • •, un by linear inter­
polation with respect to the given n axes. The points at which 
(values of s for which) this broken line cuts the original line 
segment (viewed as the axis of s) we shall call indifferently 
the zeros of the set of constants or of the function u{s). 

Let us now suppose that we have a given real-valued single-
valued function v(s) of the real variable s, continuous and 
having a finite number of maxima and minima on a ^ s ^ b, 
and a set of n axes formed in the manner already indicated. 
The graph of this function will cut the n axes in points by 
means of which we may define as above a linearly interpolated 
function v(s). If the given function v(s) is held the same, 
and the system of axes is subjected to successive changes, 
so tha t the norm of the system decreases and approaches 
zero, it is clear that the resulting sequence of linearly inter­
polated functions v(s) approaches as a limit the function v(s). 
The situation thus briefly described is typical of the character 
of the limiting process by which we shall repeatedly pass 
from an algebraic system to the corresponding transcendental 
equation or system. 

The most interesting known oscillation and comparison 
theorems are those which arise in connection with linear 
homogeneous differentia] equations of the second order. Cer­
tain of the most fundamental properties of such an equation, 
namely, linearity, homogeneity, and that property in virtue 
of which the general solution may be expressed linearly in 
terms of two linearly independent particular solutions, are 
also fundamental properties of the algebraic system of n 
equations 

(1) Ê aijXj = 0 , (i = 1, 2, - • -, n), 
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in the n + 2 unknown quantities Xi, x2, • • •, xn+2, the matrix 
of the coefficients of this system being of rank n. Such a 
system possesses two linearly independent solutions Ui, Vi\ 
and in terms of these the general solution may be written in 
the form + dviy where c and d are arbitrary constants. 
From the known theory of the differential equation, and by 
means of its relation to a particular form of system (1) as 
exhibited in the first section, we are led to certain properties 
of the solutions of this general system. We shall now state 
a few of these properties. 

If we denote by Aki the determinant of the matrix obtained 
from the matrix of coefficients in (1) by striking out the kih 
and lih columns, it may be shown without difficulty that AM 
and the determinant ukvi — UiVh are both zero or neither 
zero, provided that when A^ = 0 we do not have the excep­
tional case in which Ami — 0 = A km for every m of the set 
1, 2, •••, n-\-2 except h and /. A fairly straightforward 
argument, based on this elementary result, leads to a proof of 
the following fundamental theorem. 

THEOREM. Let Az-, ;+ i for a given range R of consecutive 
values of the integer i be of one sign and let I denote the interval 
of the s-axis corresponding to this range of i in the sense of the 
treatment in the first paragraph of this section. Let Ui and v% 
be two linearly independent solutions of the system (1) the 
matrix of whose coefficients is of rank n; and let these solutions 
be extended, by the method of linear interpolation employed 
abovej to the functions u(s) and v(s). Then on the interval I 
the zeros of u(s) and v(s) separate each other. 

If one examines the proof (see AMERICAN JOURNAL, vol. 
43 (1921), p. 84) by which the foregoing theorem is established, 
he will see that it depends intimately upon the fact that the 
determinant ui+1Vi — UiVi+i is of one sign on R. If one under­
takes to formulate a corresponding theorem for the more 
general system 

n+h 

(2) E aijXj = 0 , (i = 1, 2, • • -, n), 

in the n + h unknown quantities x±, x2, • • •, xn+n, where h IS 2, 
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the matrix of coefficients being again of rank n, he will find 
the situation in some respects the same as before, but in other 
(and perhaps more important) respects he will find it far 
different. If we let Di denote the determinant of the nth 
order matrix obtained from the matrix of coefficients in (2) 
by striking out h consecutive columns beginning with the ith, 
and if we denote by Wi the determinant of order h, 

Wi = 

X% Xi-\-\ ' * • Xi^-fi—i 

X% %i-{-l * * * %i+h—l 

Xi«» W A ) ••• % w U ) 

formed by means of a fundamental system of solutions x^, 
Xi(2), • • -, Xi{h) of (2), we shall find that for a range R of values 
of i on which Di is of one sign it is true that Wi is of one sign; 
so that in this respect the situation is the same for all values 
of A. 

But if we undertake to proceed further in the direction of a 
generalization of the theorem stated above, we find, not 
indeed that our steps are arrested, but that the theorem begins 
to lose its elegance and simplicity as soon as h is greater than 2, 
and that the complexity increases rapidly with increase of h. 
The marked simplicity for the case h = 2 is due in large 
measure to the fact that the expanded determinant Wi has 
but two terms when h = 2. I t is possible to put in a variety 
of forms the complete generalization which emerges, but there 
seems to be no way in which we can proceed directly to the 
goal without a surrender of the elegance and simplicity of the 
theorem. The results which emerge are, however, not entirely 
without interest; in particular, they appear to point in the 
direction of theorems for differential equations (for instance) 
of general order h; but these will necessarily be rather com­
plicated. We shall make no attempt to state any of the results 
here for general h, either for the case of the algebraic system 
or that of any of its limiting forms. 

If the way of progress by such direct generalization is 
barred, we shall naturally seek the goal by some other means. 
Since the difficulty arises primarily from the fact that we have 
too many linearly independent solutions of (2), that is, too 
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many arbitrary constants in the general solution of (2), let 
us restrict attention to a particular class of solutions in which 
the number of arbitrary elements is 2. For the case of 
the algebraic system (2) the simplest way to do this is to 
adjoin h —- 2 additional independent equations of the same 
type; and this brings us back to the case of system (1). But 
in the case of a differential or difference equation, for instance, 
such a means is not directly open to us. However, it is true 
that the boundary conditions in the transcendental cases are 
represented in the algebraic system by linear equations. (see 
Bôcher's Les Méthodes de Sturm, loc. cit.). The suggestion 
then is to employ, for a difference or differential equation of 
order A, boundary conditions (usually h — 2 in number) so that 
there shall be but two arbitrary elements in the general solution 
subject to these boundary conditions. In § 5, we shall exhibit 
certain results suggested by these considerations. 

In what follows in this section, we shall suppose that the 
notation in (1) is so chosen that the determinants of the square 
matrices of orders 1, 2, 3, • • -, n in the lower right-hand corner 
of the matrix | | a# | | are all different from zero. Without 
loss of generality, they may be taken to be positive, since, if 
they were not so, this could be brought about by changing 
the sign of every coefficient in certain of the equations in (1); 
and therefore we take them to be positive. We assume 
further that the determinants of the square matrices of orders 
1, 2, 3, • • -, n in the upper left-hand corner of the matrix 
| \a,ij\ | are all different from zero. Then it is possible to 
reduce system (1) to a new system 

Xi+2 + o>iXi+1 + faxi = 0, (i = 1, 2, • • -, n), 

where a» and &• are determinate functions of the original 
coefficients a#, and & is positive for all values i = 1, 2, • • -, n. 
On writing x% = y^i, where y\ and y2 are positive quantities 
and 

2/2Z+1 = p2i~-l@2i-3 ' ' ' PzPll/l, Vli = P2i-2@2i-4: ' * * / ^ A ^ , 

we obtain for the u% the relations 

(3) ui+2 + <PiUi+i + Ui = 0, <pi = ai -±- , 
2AH-2 
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where <pi is a determinate function of the a# in (1). A second 
system of the form (1), under such hypotheses as we have 
just employed, would reduce to the normal form 

(4) Vj+2 + ^iVi+i + Vi= 0, (i = 1, 2, • • -, n). 

Comparison theorems for the distribution of the zeros of the 
functions u(s) and v(s), obtained from the constants ui and Vi 
by linear interpolation, yield corresponding theorems for the 
two original systems of form (1). We state a few of the 
results for the normal forms (3) and (4). 

THEOREM. Let u% and Vi be solutions of equations (3) and (4), 
respectively, and let u(s) and v(s) denote the functions into which 
they interpolate linearly with respect to a given system of co­
ordinates. If u(s) has consecutive zeros on the \xth and (m + l)th 
intervals, ix < m, then v{s) has a zero between these zeros of u{s) 
provided that either 

(a) (pi ̂  \pi, (i = fx, fx + 1, - - -, m), the equality sign not 
holding f or all these values ; or 

(b) <pi = \pi, (i = \x, \x + 1, - • -, m), and the sets of constants 
Ui and Vi, for i — \x, \x-\- \, • - •, m, are linearly independent* 

From this several further properties of comparison are 
readily derived. We state two of them. 

Suppose that u\ 4= 0, Vi #= 0, <pi ^ xpi, (i = 1, 2, • • -, v), 
and that u2/ui > v^vi. Then, if u(s) has k zeros on the first 
v intervals of the coordinate system, v{s) has at least k zeros 
on these intervals and the jih of these zeros (in increasing 
order) of v(s) is to the left of the j th one of u(s). 

Let u\, v\, ujc+i, vjç+i be all different from zero and let 
u2/ui > v2/vi. Let u(s) and v(s) have the same number (which 
may be zero) of roots on the first k intervals. Then we have 

Uk+2 . Vk+2 

Uk±i Vk-hl 

provided that <pi ^ ^ for i — 1, 2, • • -, k. Other similar 
theorems may be stated by modifying in certain respects the 
inequalities in the hypothesis and the conclusion. 

* Compare the related theorem due to M. B. Porter, ANNALS OF MATHE­
MATICS, (2), vol. 3 (1902), p. 65. 

file:///x-/-
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3. Algebraic Expansion Problems. The r homogeneous lin­
ear algebraic systems in the unknown quantities x, 

(5) Z2 (a0hij + Xl^lAtf + ^2^2hij + * * ' + \<hh%i)Xhj = 0, 

(i = 1, 2 , • • • J W A ) , 

a separate system being formed for each value h of the set 
1, 2, • • •, r, and the r adjoint systems 

(6) z2 (aohji + Xî iAji + • • • + \arhji)yhj = 0, 
. 7 = 1 

( i = 1, 2, • • • ,n A ) , 
are consistent (in the sense that each system in each set of r 
systems has a solution not identically zero) for precisely the 
same values of the parameters Xi, X2, • • •, Xr, namely, those 
values which satisfy the characteristic system of r deter-
minantal equations 
(7) J aohij + ^lUlhij + • • • + \drhij | = 0, 

(A= 1,2, . . . , r ) , 
where for a given value of h the first member is the determinant 
of order nh whose element in i th row and j t h column is that 
which is written out explicitly. 

The sets of characteristic values of Xi, X2, • • •, \r for (5) 
and (6), namely, the sets of solutions of (7), necessarily finite 
in number if certain exceptional cases are avoided (as we 
intend they shall be), we shall denote by 

\AP) \ 0 ( P ) . . . X (P) 

for varying values of p, the two ordered sets being distinct 
for two distinct values of p. The corresponding solutions of 
(5) and (6) we shall then denote by 

xhj
(p\ yhj

(p\ (i = 1, 2, • • -, nh\ h = 1, 2, • • . , r). 

If we avoid certain exceptional cases, readily described in 
terms of the coefficients a in (5) and (6), we then have (for 
varying p and a) the following relations expressing the funda­
mental conjugate character of the solutions of (5) and (6), 
namely: 

(8) z E • • • E E Du... „, n « ^ w I n ' 

file:///drhij
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where 

^i\h "•• V r ~" 
ar2jzi2 

dr, 

In what follows we shall assume that the mentioned excep­
tional cases are avoided, so that we shall have situations in 
which relations (8) are valid. 

In order to bring out clearly the nature of these conditions 
of conjugacy, let us consider the case when r = 1. Systems 
(5) and (6) then take the form 

(9) X icy + \bij)xj = 0, ]T (Pji + Uji)yj = 0, 
(i = 1, % ri). 

The conditions of conjugacy reduce to 

do» sp,*/ 'v«{;^;:: 
In the more special case when bu — hi, &# = 0 if j 4= i, these 
become 

When hi = 1 for every i these become merely the usual condi­
tions of biorthogonality; and these in turn reduce to the 
usual conditions of orthogonality in case we have c# = cji 
and the same solutions x and y are taken for the two systems 
in (9). Thus we see that (8) affords an extensive generaliza­
tion of a classic elementary relation of wide usefulness. 

If m is the number of sets of characteristic values for (5) 
and (6), and if the set of constants 2^ 2 . . . ir, for ù varying from 
1 to rih for each h, may be "expanded" in the form 

(12) Z ) CkXli1
(k)X2i2

(k) . < * ) 

where the c& are independent of the subscripts ih, the foregoing 
properties of conjugacy are available for an immediate deter­
mination of the Ck in the form 
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nl «1 nr nr r 

Z2 Z-é * " Z~é zL, ^hh "• irJ&iH •" V i l 2M/* 

Zl/ Zl^ ' * * Z^ 2 ^ ^*lil •" V r l l ^ A Vhh 
i\=l j\=l ir=zljr=l h=l 

I t is easy to obtain, in terms of the coefficients a of (5) and (6), 
broad sufficient conditions for the validity of the "expansion" 
in (12). The essential simplicity of these formulas is more 
readily apparent from the special case involved in equations 
(9) to (11). We assume that for this case m has its usual 
value n. Then if 

(14) »< = £ c*a*<*>, (i= 1, 2, . - . , n ) , 
7 f = l 

we have for cfc one' or the other of the values 
n n n 

E E M#/*> E W > 
(is) - ^ ? » 4? • > 

according as we have the case of (10) or (11). If hi = 1 the 
latter reaches the maximum of elegance, at least if equations 
(9) are then self-adjoint and the same solutions x and y of the 
two systems are taken. 

In the foregoing expansion formulas the number of subscripts 
on the "function" to be expanded in terms of the "functions," 
x is equal to the number of parameters X involved in the 
original system of algebraic equations. When we proceed to 
the transcendental limiting cases we shall see that these 
algebraic results are in the form best suited to applications 
to equations involving functions of one variable. In order to 
obtain a form suitable as the heuristic guide in problems 
involving functions of more than one variable in the original 
equations, it is desirable to look upon our expansion formulas 
in a way slightly different from that in evidence in the fore­
going work. We can best bring out what is needful by con­
sidering expansion (14). Let us suppose that n is the product 
JJLV of two integers. Let us replace the subscript i, running 
over the set 1, 2, • • -, n, by the double subscript ij where i 
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runs over the set 1, 2, ••- , /* and j over the set 1, 2, • • -, v. 
Then equations (14) become 

JXV 

(16) Zij = ]C ckXijXk), (i = 1, 2, • • -, /*; j = 1, 2, • • -, v). 

The coefficients c& are of course determined by the same 
methods as before but the formulas are modified through the 
replacing of single summations by double summations. I t is 
clear that we may pass in a similar way to multipartite instead 
of bipartite subscripts. This obvious remark concerning a 
change from one subscript to more than one subscript entails 
important consequences in a great variety of expansion 
problems. 

With a given set of n axes on an interval a ^ s ^ b, as in 
the opening paragraphs of § 2, let us extend by linear inter­
polation the n sets x^k\ k = 1, 2, • • -, n, and the set s» of 
equation (14); and let x(lc)(s), k = 1, 2, •••, n, and z(s) 
denote the functions of the continuous variable s so obtained. 
Then it is easy to prove that 

(17) *(*) = £(?**<*>(*), 

where the coefficients c& have the same values as in (14). 
Thus we pass from "expansions" of sets of constants to inter­
esting expansions of a particular class of functions of a con­
tinuous variable. 

Let us consider the like matter for functions of two subscripts 
and expansions of the form (16). For the representation of Uij 
f or i = 1, 2, • • -, /a and j = 1, 2, • • -, v, we shall start from v 
parallel planes, one for each value of j . In each of these 
we use for s the same range a ^ s ^ b and place the planes 
in order 1, 2, • • -, v for j , each directly in front of the preceding 
one and arrange the vertical axes, so that the vertical axes 
in any one plane are (point for point) the orthogonal projec­
tions on that plane of the axes in any other plane. Next, for 
fixed j we extend the Uij to Uj(s) by linear interpolation as 
before. Then for each value of s we connect the points Uj(s), 
j = 1, 2, • • -, v, by straight-line segments joining the consecu­
tive points. We thus get a sort of broken surface affording 
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the graphical representation of a function u(s, f), gotten (we 
may say) by linear interpolation from the points u^. We call 
this the graphical representation of the set of constants u^ 
with respect to the given system of axes. Let c ^=t ^ d 
denote the range of t in this representation, this range evidently 
depending on the positions of the v planes employed in setting 
up the graphical representation. 

Let us replace the subscripts i, j in the functions in (16) 
by the continuous variables s, t in accordance with the method 
just indicated. Then it is easy to prove that we have 

(18) z{s, t) = 2Ü ckx<k)(8, t), (a^s ^ b , c ^ t ^ d), 
k=i 

where the coefficients c& have the same values as in (16). 
Similar (but more complicated) extensions may be associated 
with (12) so that we come through to a relation of the form 

m 

(19) «(«I, «J, • • -, *r) = £ C1CX^\S1)X^(S2) • • • XrW(Sr), 
k = l 

where the coefficients Ck have the same values as in (12) and 
the functions involved depend on continuous variables. Fur­
ther generalizations may also be made in (12) and in the last 
formula by replacing one or more of the subscripts in in (12) 
by multipartite subscripts and by linear interpolation in the 
resulting relations. 

In the case of the principal transcendental expansion prob­
lems the foregoing expansions in a finite number of terms 
are replaced by .expansions in an infinite number of terms 
so that difficult questions of convergence arise. In one of the 
most important of these transcendental problems, namely, 
that treated by Birkhoff (TRANSACTIONS OF THIS SOCIETY, vol. 
9 (1908), pp. 373-395), the convergence questions are dealt 
with by the aid of a contour integral by means of which the sum 
of any finite number of terms of the series is readily expressed. 
Similar contour integrals exist for representing the sum of a 
finite number of terms of the series in (12) or (14). Let us con­
sider the general case. For any given value of h let A^(Xi, X2, 
• • •, Xr) denote the determinant in the first member of (7) and 
let A/uy(Xi, X2, • • -, Xr) denote the cofactor of the element in the 
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i th row and jth column of this determinant. We assume for 
the present purpose that systems (5) and (6) are so restricted 
that the solutions of each for characteristic values of the X's 
is unique (except for a constant factor) and that for each h 

lim Afe(\i, X2, • • -, Xr) 
Xi=Ai(*),»sXr«:Xr(*) \ \ (k) 

Afc — A/> } 

exists and is finite, where \i(k\ • • -, Xr
(/b) is any set of char­

acteristic values for (5) and (6). Then, if we avoid a certain 
exceptional condition not arising in the (most important) 
case r = 1, we have for the kth. term of the expansion of 
zht2... tr afforded by (12) the value 

M = Y f f ••• f I t t 

ir=\ jr=i j 

where Thk (h = 1, 2, • • -, r) is a contour in the X/rplane about 
the point \^k\ containing in its interior no other char­
acteristic value of \h, and where 

fy'lh ' ' ' jrtr ~ i i 
&hjhthQ<l, ^2, ' ' ', Xr) 

h=i AhÇkl, X2, • • ', Xr) 

If we replace the contours Thk (h = 1, 2, • • -, r) by I \ , a 
contour which includes within it all the characteristic values 
of \n, and perform the same multiple integration about such 
contours, we shall have the value of the function ztltz • • • tr* 
I t is clear that we may form similarly the contour integral 
for any given partial sum of the series for ztlt2 • • • tr in (12). 
For the case of systems (9) we have the equations 

*« = -4=T fÊÊ^#M*&, (*=1,2, -..,n), 
2TT\ / - l J r<=w=i A(X) 

where T is a contour in the X-plane inclosing all the character­
istic values for (9), and where A(X) is the determinant of the 
coefficients in the first member of (9) and Ayf(X) is the co-
factor of the element in the j th row and tth column of A(X). 

For use in connection with expansion problems involving 
difference equations, it is desirable to observe that several of 
the important formal properties of (5) and (6) are preserved 
in the case of infinite systems in which appropriate conditions 
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of convergence are realized. Thus in (5) and (6) we may 
allow some or all of the numbers rti, - • - ,nr to become infinite; 
for the sake of simplicity we suppose that all of them become 
infinite. The system (7) is replaced by a transcendental 
system having, in the cases which interest us, an infinite 
number of solutions. Subject to suitable limitations for pro­
curing convergence, we may proceed as before and thus derive 
a new form of (8) in which the change is that of replacing 
each of the numbers rti, • • -, nr by oo, and a new form of (12) 
in which m is replaced by oo and the relations are to be valid 
for each in ranging over the set 1, 2, 3, • • -, the expressions 
for the coefficients ck (k = 1, 2, 3, •••) having the form 
which results from that in (13) on replacing nh • • -, nr each 
by oo. Analogues of many of the additional foregoing results 
persist. In the formulas thus obtained we have a useful 
heuristic guide to certain expansion problems in the theory 
of difference equations, a part of which we shall presently 
indicate. 

4. Transcendental Expansion Problems. Let us consider a 
fixed interval a ^ s ~ b of the real s-axis, and let us associate 
with certain points of this interval the discrete values of i 
and j in equations (5) and (6). For the hih system in either 
(5) or (6), we take on (ab) a set of points nh in number including 
the points a and b; and we interpolate Xhj into a function 
%h(s) by the method of linear interpolation described above. 
Similarly a ^ y is interpolated into a function a unis, t). Equa­
tions (5) and (6) may now be looked upon as establishing 
relations among the functional values of these functions of s 
and t at certain points only of the axes of s and t; and so of 
defining the solution functions at these points and these alone, 
their definitions being completed by the methods of interpola­
tion agreed upon. 

To these systems we now apply certain limiting processes, 
allowing the numbers nh (or at least a part of them) to increase 
indefinitely. As they increase, the functions Xh(s) and akh(s, t) 
pass through a corresponding sequence of changes. If the 
processes involved lead to replacing the original equations by 
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well-defined limiting equations and their solutions by well-
defined functions, we have in the process a suggestion of a 
heuristic guide to probable solutions of the limiting problems 
and to certain probable fundamental properties of these, 
together with intimations as to how they shall be established. 

Usually we shall require that the distribution of basic points 
on the interval (ab) of the s-axis shall undergo change in such 
way that the norm of the distribution shall approach zero. 
By such processes one may realize, for instance, integral 
equations and differential equations as limiting cases. Among 
the characteristic results, for the finite case, which persist 
after certain limiting operations of this type have been per­
formed are those relating to conjugacy, expansions, and 
representation of the latter by contour integrals. Without 
going into details, we may state the general limiting forms of 
certain equations, special cases of which we shall have occasion 
to consider. Equations (8), (12), (13) pass into the following 
limiting forms: 

J a J a ' * * J a U\8i, ^ly ' ' j Sr> *r) 

(20) È ^(P) («fcW*(th)dSldh • • • dSrdU { = J |f £ J £ 

(21) Z(SU S2, • • -, Sr) = 2 CkXl(k)(8i)%2ik)M • • • Xr
W Or ) , 

fa fa ••• fa z(sh S2) • • •, Sr)D(sU h, • • •, Sr, tr) 

(99, yiik)(h) y2
w(h) • • • y,w(*r)<foi<fti • • • dsrdtr 

{ ' Ck fabfa
bfabD(Sl,h,---,Sr,t;) 

r 

h=i 

Corresponding to (10), (11), (14), (15) we have special cases 
of importance which indicate more clearly the essential sim­
plicity of the formulas, namely, 

P =f= er, (23) f* fa
h b(f, s)x^(s)y^(t)dsdt{ + jj |J 

(24) f» b{s)xMWHs)d8 { J o if p î ^ 

<r, 
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(25) *(«) = £ ckxW(s), (a == s Si b), 
k=l Ji 

m \ „ _ fa* fa
hb(t,s)z{s)yM{t)dsdt 

K } * JlbJlbb(t,s)x^(S)y^(t)dsdt 
or 

If for the last form of c^ we have c(s, t) = c(£, s), so that 
y(k)(s) may be taken equal to #(A;)(s), and if b(s) = 1, we have 
in (25) and the latter form of Ck in (26) formulas for the formal 
expansion of an "arbitrary" function of a single variable in 
terms of orthogonal functions of that variable; so that all the 
formulas (20) to (26) are generalizations of classic relations in 
the expansion of functions. 

In these formulas the number of variables in the function z 
to be expanded is equal to the number of parameters involved 
in the problem. This correspondence is not essential. The 
desired extension can best be brought out by starting from the 
particular expansion (16). By linear interpolation we first 
obtain (18). Then we may proceed to the limiting case in 
such wise that /x and v simultaneously approach infinity, the 
norm of the corresponding distributions of points on the 
«9-axis and the tf-axis approaching zero. We are thus led heur-
istically to an expansion of the form 

(27) z(8,f) = !>**<*>(*, 0, 
k=l 

where the x's are now solutions of the limiting problem. I t 
is easy to see that the properties of conjugacy are maintained 
formally and that we may therefore readily determine the 
coefficients c&. We may also proceed from (18) to the limit 
in another way, namely, by holding JJL fixed and allowing v to 
become infinite as before; we are thus led to expansions of the 
form 

CO 

(28) »<(*) = £ chxP\s), {i = 1, 2, • • -, n), 

for expanding a system of JJL given functions in terms of fx sets 
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of functions, the coefficients c& of the expansion being the 
same for each of the given functions. This remarkable type 
of expansion I saw first in the manuscript of Dr. C. C. Camp's 
dissertation which he was kind enough to allow me to read; 
it occurred there in connection with a particular system of 
two linear differential equations of the first order.* In (27) 
we have an expansion of the type which arises in the theory 
of partial differential equations in two independent variables. 
In (28) we have the type of expansions which arises in the 
theory of n linear differential equations of the first order. 
I t is clear that the type of extension employed in this paragraph 
for the case of one parameter may be utilized in a variety of 
ways in connection with problems involving r parameters. 

Let us consider the results to which this heuristic guide 
leads us in the case of the adjoint differential systems 

(29) f* = £) (an + \aii)yh (i = 1, 2, • • •, n), 
ax j^i 

(30) j 1 = 22 (— aJi — ^<*ji)zj> d = h 2, --,ri). 

If for fixed i we multiply these respectively by Zi and y^ 
add the resulting equations member by member, sum as to 
i from 1 to n, and then integrate from a to & (a range in which 
the coefficients are assumed to be continuous) we have 

(31) [yiZi + y2z2 + • • • + ynZn\lzl = 0. 

The first member of this relation is a non-singular bilinear 
form in the two sets of 2n variables each, 

(32) yx{a), y2(a), • • -, yn(a), yi(b), • • -, yn(b); 

zi(a), '", Zn(a>), *i(&), * • -, Zn(b). 

It can be written in an infinite number of ways in the form 
In 

(33) [2/1Z1 + • • • + jwfeKS = Z Yi(3f)Zi(z), 

where Yi(y)[Zi(z)] is a set of 2n linearly independent homo-

* Since this was written a paper by A. Schur has appeared dealing with 
this problem; see MATHEMATISCHE ANNALEN, vol. 82 (1921), pp. 213-236. 
It contains (p. 214) a reference to a special case of the problem treated by 
Hubert (GOTTINGER NACHRICHTEN, 1906, pp. 474-480). This I had not 
seen before. 
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geneous linear functions of the 2n variables y[z] of (32). 
With (29) and (30), respectively, we associate the boundary 
conditions 

(34) Yiiy) = 0, (i= 1,2, . . - , n ) , 

(35) Zi(z) = 0, ( i = n+ 1, -•-, 2w). 
Then the characteristic values X for problem (29), (34) are 
the same as those for problem (30), (35). We suppose that 
the conditions are set up in such a way that the number of 
these characteristic values is infinite. We denote the char­
acteristic values and the corresponding solutions by X(/b), 
yth\ Zi(k\ (Je = 1, 2, 3, • • •)• Corresponding to (20), (21), (22) 
we now have the relations 

f * V V (*) a) ƒ = Oif fc =H, 

X hhajiVi Zj l * o i f & = z, 
A-(s) = J2ckyi{k\ (i = 1, 2, • -, n), 

n n 

] C Z ) OLjijiZj{k)dx 
Ck 

_ J* i=l j=l r n n 
(k = 1 ,2 ,3 , . . . ) . 

If we apply to systems (29) and (30) a limiting process 
often employed by Volterra we are led to adjoint integro-
differential equations of the form 

^ y ' = I {u(x, s, t) + \v(x, s, t) )y(x, t)dt, 
dx Ja 

dz(x, s) __ 
I { — u(x, t, s) — \v(x, t, s)}z(x, f)dty 

dx 

where the range of variation of x is from a to b while that of 
s and t is from a to j3. Corresponding to the last three equa­
tions of the preceding paragraph we now have the following : 

f = 0 if k 4= I 
fa fJ* fa «fo t, s) Vk(x, s) zi{x, t)dsdtdx\ ^ Q .f ^ = ƒ 

00 

f(x, s) = J2ckyk(x, s), 
ft=l 

= f* f* f f v(x> f> s^(x> ^ Zk(x> l)dsdtdx j 
Ck fa f f fa v(x, t, s) yk(x, s) zk(x, f) ds dt dx 

( f c = l , 2 , . . . ) , 
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where yk(x, s), zk(x, s) denote the solutions corresponding to 
the characteristic value X& of the set Xi, X2, • • • of distinct 
characteristic values. 

The same procedure may be applied with equal facility to 
the adjoint systems of integro-differential equations 

dyiix, s) * 
— ^ — = ^ (ay + X«y) y,(x, s) + 

r J2 [pij(x, s, t) + \(Tij{x, s, t)]yj(x, t) at, 

— ^ — • = Ç (— aji — \aji) zj(x, s) + 

I J2 I — Pji(x> *> s) ~ XoVifo t> s)] Zj(x, t) dt, 

for i = 1, 2, • • -, n, and to various generalizations and exten­
sions of them. In this way emerge formal properties of 
various types of expansions arising in connection with differ­
ential and integro-differential equations. The problems may 
likewise be set up with equal facility for the case of an equation 
or system of equations of any order with respect to differen­
tiation instead of merely for the first order as in the foregoing 
problems. Furthermore, one can treat equally well a system 
with r parameters X involved in a way analogous to that 
observed in connection with the algebraic problem defined at 
the beginning of § 3. The formulas necessarily become more 
complicated, but the fundamental guiding ideas are un­
modified; the algebraic theory indicates the whole procedure 
and suggests the principal results as limiting cases of the 
algebraic propositions. 

The way in which the corresponding problem may be set 
up for the difference equation will be indicated by a very brief 
statement. Let us consider the adjoint systems of difference 
equations 

n 

(36) Ui(z+ 1) — Ui(x) = X) (<Pij + Wtf) UAX)> 

(i = 1, 2, •••, n), 
n 

(37) Vi(x) - vt(x + 1) = X) (<Pn + Mji) Vj(x + 1), 

(i = 1, 2, •••, n), 
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where <p# and \pa are functions of x which are analytic at 
infinity and vanish there to an order at least as high as the 
second. We confine attention to those solutions alone which 
have the property that each function in a solution approaches 
a (finite) limiting value as x approaches infinity along any ray 
from the origin exclusive of the negative axis of imaginaries or 
along any line proceeding to the right parallel to the axis of 
reals. 

If we multiply (36) through by Vi(x + 1) and (37) through 
by — Ui(x), add the resulting equations member by member, 
and sum as to i from 1 to n, we have 

n 

(38) £ A {«,(»)*(*)} = 0. 

If the real part of a is sufficiently large we have u% and Vi 
analytic at every point x whose real part is not less than the 
real part of a. Hence in (38) we may sum as to x from a to 
infinity, where x runs over the values a, a + 1, a + 2, • • • ; 
thus we have 

(39) £ K-(°°) »<(«>) - Ui(a)vi(a)} = 0. 
i=l 

Let us now suppose that adjoint homogeneous linear boun­
dary conditions, implying (39), are set up on the Ui(co), 
Ui(a) and on the ^(°o), Vi(a) similar to conditions (34) and 
(35) in a similar problem above and let us suppose that we 
have the infinite set of characteristic values and corresponding 
solutions \(k), Ui(k), Viik\ (k = 1, 2, 3, • • •)• The fundamental 
formulas for the expansion problem thus arising are the follow­
ing: 

£ £ g *»(* + 0 * (*}(a + 0 tf»(a + l + « { + o i f f c = I 

ƒ»•(«) = 2 okUiW(x), (i = 1, 2, • -, n), 

Z E E *Jt(fi + 0Ma + t) ,/»(0 + 1 + 0 
t = 0 i=z\ j=\ 

Ck = „ « n > 

Z E E iM* + 0 Ui(k)(a + t) «/«(a + 1 +t) 
(k= 1 ,2 ,3 , • • • ) • 
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If a classic limiting process of Volterra is applied to systems 
(36) and (37), they go over into adjoint integro-difference 
equations analogous to the integro-differential equations 
treated above; and these may be generalized to related 
systems just as we generalized the corresponding problem for 
integro-differential equations. In all these cases the properties 
of conjugacy and the formal results for expansions persist in 
the form naturally to be expected. Moreover, corresponding 
and closely similar theories exist for g-difference and integro-
g-difference equations. 

In view of the basic algebraic theory and the transcendental 
problems already treated it is clear that there must exist in 
the theory of integral equations expansion problems involving 
r parameters not only in the classic case when r = 1 but also 
in the general case when r is any positive integer. Moreover, 
if we think of the several types of expansion problems—those 
for differential, difference, g-difference, integral, integro-
differential, integro-difference, and integro-g-difference equa­
tions—in intimate connection with the basic algebraic theory, 
it becomes apparent that the case of r parameters (for r > 1) 
is not confined to a set of r equations of the same sort. There 
is nothing to prevent one subset of the basic algebraic equations 
from proceeding to differential equations as limiting forms, 
another to difference equations, another to integral equations, 
another to g-difference equations, and so on. Thus we can 
see beforehand that we may formulate the expansion problem 
for a variety of mixed systems. One is in fact led naturally to 
such systems in the consideration of certain integro-differential, 
integro-difference, and integro-g-difference equations. We 
shall not take space to treat any of these mixed systems, pre­
ferring rather to exhibit briefly the nature of the problem for 
partial differential equations. From these one may proceed 
naturally to related integro-differential equations. Similar 
problems may be formulated for partial difference and integro-
difference equations. 

Let us consider the adjoint partial differential equations 

L(u) + XZifa) = 0, M(v) + XJf i(«>) = 0, 
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where 

the symbols u, v, a, b, c, a, /3, y, p, q, r denoting functions of 
the independent variables x and y continuous and suitably 
differentiate in the square 0 S a ; = l , 0 a y = l . I t is easy 
to show the existence of an identity of the form 

fQ
lfQ

lb{L{u)+\Ll{u) }-u{M(v)+\M1(v)} ]dxdy^ f^Bdt, 
where B is a sort of bilinear form in the functions u and v 
and their first derivatives, the arguments of the functions being 
suitably restricted. If suitable boundary conditions are set 
up for the ^-problem and for the ^-problem so that B = 0 in 
virtue of the boundary conditions and so that we have the 
infinite set of characteristic values and corresponding solutions 
Xfo u>k> Vk> (k = 1, 2, 3, • • •)> then we have the following funda­
mental formulas: 

JiïJiïuiMxfa) dx dy\^ Q .f { ^ 3! 

00 

ƒ<>> y) = X) chuh(x, y), 
A ; = l 

__ folfiï(x, y) Mxjvk) dxdy _ 
Ck So'So'udx, y) M1(vk) dxdy ' ^ *' *> 6' " '}' 

These results are readily carried over to partial differential 
equations of other forms and to the case of much more general 
regions than the square over which we have integrated in this 
particular instance. 

5. Transcendental Oscillation and Comparison Theorems. 
The fundamental algebraic oscillation theorem in the earlier 
part of § 2 has several limiting forms of interest. We consider 
first those for homogeneous linear differential equations. The 
result is classic for equations of the second order: the zeros 
of two linearly independent solutions of such an equation 
separate each other throughout any interval containing no 
singular point of the equation. We shall now state one 
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extension of this result to equations of order n, n > 2. Such 
an equation we write in the general form 

(40) U^ + p&W + h Vn-lU' + VnU = 0, 

where the superscripts refer to differentiation and where the 
coefficients p are real-valued, single-valued, continuous func­
tions of the real variable x on the interval (a b). Since this 
involves an n-îold infinitude of solutions we shall require 
boundary conditions to restrict the permissible solutions to a 
two-fold infinitude linearly dependent on two linearly inde­
pendent solutions (this being done so that the new theorem 
shall indeed be a direct limiting form of the algebraic theorem 
referred to). Suitable boundary conditions may be expressed 
by means of Stieltjes integrals in the form 

(41) £j?Li,iu)fyi,ix) = 0, 

(i = 1, 2, • • -, n — 2; v = positive integer), 
where the \pij(x) are functions of bounded variation on (ah) 
and the Lij(u) denote homogeneous linear expressions in u, 
uf, • • -, 'U(n_1). As a special case we have conditions which 
reduce to the following: u(a) = 0,u'(a) = 0, • • -,u{-n~z)(a) = 0. 

By aid of a fundamental system üi, ü2, • • •, ün of solutions 
of (40) we define constants X through the formulas 

= 1, 2, . •• , r i - 2 
1, 2, ••- ,71 

and then the determinant D(x), 

Y^faLikiÜj) (hl/ihix) = Xtf, G ) • 

U\ 

Üi 

An 
A21 

U2 

Ü2 

Xl2 

X22 

• • • Un 

• • ' Ün' 

Ain 

A2/1 
D{x) = 

^n—2, 1 An—2> 2 ' ' * An—2> n 

The zeros of D(x) are independent of the choice of the funda­
mental system by means of which they are defined; that is, 
they depend only on (40) and (41). These zeros we shall 
call the special points of (ah) for the problem (40), (41). 
Then we have the following theorem: 

On any interval of (ah) containing no special points for the 
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problem (40), (41) the zeros of any two linearly independent 
solutions of (40), (41) separate each other. 

The foregoing result may be applied to the case of any two 
linearly independent solutions of (40) without reference to any 
preassigned boundary conditions. For this purpose we asso­
ciate with any two linearly independent solutions U\y u2 of 
(40) a set of boundary conditions capable of representation in 
the form (41) and having the property that the solutions of (40) 
and the determined conditions (41) are those functions and 
those alone which are linearly dependent upon u\ and u2. 
As a simple example of such associated boundary conditions 
we have those determined as follows : Let the initial constants 
for Ui and u2 at a point x = a of {ah) be 

Ui^(a) = pik, (k = 0, 1, 2, - • . , n - 1; i = 1, 2). 

Let the coefficients o-# be so chosen that the equations 

<riou(a) + <Jnu'(a) + <ri2u"(a) + • • • + aiy „ „ ^ " ^ ( a ) = 0, 
( i = 1,2, . . . , n - 2 ) , 

have those solutions and those alone which may be written 
in the form u{k)(a) = aiplk + a2p2Jc, (Jc = 0, 1, • • -, n — 1), 
where a\ and a2 are arbitrary constants. Having thus intro­
duced suitable boundary conditions restricted by means of the 
given solutions U\ and u2, we may define the determinant D(x), 
and hence the special points, in the way indicated for the 
preceding case. By means of these points we may divide the 
interval (ab) into segments on the interior of each of which 
the zeros of U\ and u2 separate each other in accordance with 
the foregoing theorem. 

As a second case, let us consider the difference equation 
L(x) u{x) + M(x) u{x + 1) + N(x) u{x + 2) = 0 

in which all the indicated functions are real-valued, single-
valued, continuous functions of the real variable x f or x S a, 
and L(x) and N(x) are both of one and the same sign for 
x ^ a. Let Ui(x) and u2(x) be a fundamental system of 
solutions of this equation and let a (a ^ a) be a point for which 
w(a) =1= 0 where w(x) = Ui(x) u2(x + 1) — Ui(x + 1) u2(x). 
Let ûi(x) be the function obtained by linear interpolation 
from the set of constants Ui(a), Ui(a-\-l), Ui(a-\-2)9 •••, 
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with respect to a system of coordinate axes obtained by 
drawing lines perpendicular to the ar-axis through the points 
a, a + 1, a + 2, • • •. Let the zeros of ûi(x) on the range 
a ĝ x < oo be called the characteristic points of Ui(x) with 
respect to a. Then we have the following theorem analogous 
to that of Sturm for a second order differential equation: 
The characteristic points of u\(x) and u2(x) with respect to a 
separate each other. 

This result admits of extension to a system formed of a 
difference equation of order n, n > 2, and n — 2 boundary 
conditions of a certain general sort restricting the simultaneous 
solutions to a two-fold infinitude. Similar results may also 
be obtained for g-difference equations. In fact, those for 
difference and g-difference equations are both special cases of 
like results for a rather general class of functional equations 
including difference and g-difference equations as special 
cases; but we shall not here take the space necessary to set 
forth these more general results. The comparison theorems 
which follow suggest their nature. The second theorem of 
§ 2 has as a limiting case a theorem which is essentially equiva­
lent to the following classic Sturmian theorem of comparison. 

Let us consider the two differential equations 

(42) -{Kw^-G.u = 0, 

(43) ^ ( X 2 0 - G2(u) = 0, 

in which Ki, K2, G\, G2 are functions which are continuous 
throughout the interval (ab) defined by the inequalities 
a ^ x ^ b and in this interval satisfy the relations 

(44) 0 < K2 < Ku G2 g GL 

Moreover, let ui and u2 be solutions of (42) and (43), respec­
tively, neither of which is identically zero in (ab). Then if x\ 
and x2 are any two consecutive zeros of u\ in (ab) there is at 
least one zero of u2 in the interior of the interval (xix2) pro­
vided either that at least one equality sign in (44) fails to 
hold at every point of the interval (x\x2), or that u\ and u2 

are linearly independent in (xix2). 
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The two results stated in the paragraphs following the 
theorem referred to in § 2 have as limiting cases two theorems 
which are also classic in the theory of Sturm. The algebraic 
theorems were indeed suggested by these Sturmian theorems. 
The latter, with considerable loss of elegance, have been 
extended to homogeneous linear differential equations of 
general order h (ANNALS OF MATHEMATICS (2), vol. 19 (1918), 
pp. 159-171). I t is possible to extend the general algebraic 
results of the latter part of § 2 to the analogous algebraic case, 
namely, the case of algebraic systems with k linearly indepen­
dent solutions; but the results lack (in some respects) the 
desired elegance. From them one may in turn obtain corre­
sponding properties of a certain class of functional equations. 
We content ourselves with giving some of these results for the 
most interesting case, namely, that in which the equations have 
just two independent solutions. 

Let us consider the substitution x' = Sx, denoting its ?ith 
power by x' — Sx

n. Let it be such that there exists an open 
interval I of the real £-axis, such that lim SXo

n = /5 for 
every xo of I, j3 being an end-point of I and the limit being 
approached monotonically. Then consider the functional 
equations 

(45) u(Sx*) + <p(x)u(Sx) + u{x) = 0, 

(46) v(Sx
2) + *(x)v(Sx) + v(x) = 0, 

in which <p(x) and \f/(x) are real-valued, single-valued, continu­
ous functions of the real variable x on the interior of the 
interval I. Suppose, furthermore, that Sx is such that each 
of these equations has a fundamental system of solutions 
consisting of two functions which are real-valued, single-valued, 
and continuous on the open interval I. (In case Sx = x + 1 
and I is the interval a < x < oo, our equations are ordinary 
difference equations; in case Sx = qx, q being real and greater 
than unity, and I is the interval 0 ^ a < x < oo, our equa­
tions are g-difference-equations.) If a is an interior point 
of the interval I , we define the characteristic points of a func­
tion t(x) with respect to a to be the zeros on the interval 
a ^ x < j3 (or a ^ x > /?) of the function t(x) derived from 
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the constants t(a), t(Sa), t(Sa
2), • • • by linear interpolation 

with respect to the system of coordinate axes obtained by 
drawing lines perpendicular to the a>axis through the points 
a, Sa, Sa

2, • • •. Let u and v be real-valued, single-valued, con­
tinuous solutions of equations (45) and (46), respectively. 
Then we have the following three theorems : 

If u{x) has two consecutive characteristic points with respect 
to a on the juth and (m + l) th intervals (fi < m) of the set 
of intervals whose end-points are the consecutive pairs of the 
sequence a, Sa, Sa

2, Sa
s, •••, then v(x) has a characteristic 

point between these characteristic points of u(x) provided 
that either 

(a) <p(x) ^ \p(x) at the end-points of each of these intervals 
from the juth to the mth inclusive, the equality sign not 
holding for all the end-points of these intervals; or, 

(b) <p(x) = \f/(x) at the end-points of each of these intervals 
from the //th to the mth inclusive, and the two sets of constants 

uiSa»-1), U(SS), ••• ,^(Sam-1) , 
viSS-1), viSa»), • • ' , viSa™'1), 

are linearly independent. 
Next, let us suppose that u(a) 4= 0, v(a) =t= 0, u{Sa)lu(a) 

> v(Sa)/v(a); and that <p{x) ^ \p(x) for x = a, Sa, Sa
2, • • -, 

AS/ - 1 . If u(x) has h characteristic points on the v intervals 
whose end-points are the consecutive pairs of the sequence 
a, S a, S a2, • • •, Sav, then v(x) has at least k characteristic points 
on these intervals; and the j th of these characteristic points 
of v(x) (counted from a towards Sa

v) is nearer to a than the 
j th characteristic point of u(x). 

In the third place, let u(a), v(a), u(Sa
k), v(Sa

k) be all different 
from zero and let u(Sa)/u(a) > v(Sa)/v(a). Let u(x) and v(x) 
have the same number (which may be zero) of characteristic 
points on the k intervals whose end-points are the consecutive 
pairs of the sequence a, Sa, Sa

2, • • •, Sa
k* Then we have 

u(Sak+1) v(Sg™) 
u(Sa

k) > v(Sa
k) ' 

provided that <p(x) ^ \[/(x) for x = a, Sa, • • -, S^""1. 
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