ON THE RELATIVE CURVATURE OF TWO CURVES IN $V_{n}{ }^{*}$

1. Definitions of Geodesic Curvature. In any space of n dimensions V_{n} whose first fundamental form is given by \dagger

$$
\begin{equation*}
d s^{2}=\sum_{i k} a_{i k} d x_{i} d x_{k}, \tag{1}
\end{equation*}
$$

the geodesic curvature κ of a curve c at a point P may be defined in one of the two following ways:
(i) Draw the geodesic g tangent to c at P and on g and c lay off from P equal infinitesimal arc lengths δs; let Q and \bar{Q} be the extremities of these arcs on c and g respectively; then \ddagger

$$
\begin{equation*}
\kappa=\lim _{Q \rightarrow P} \frac{2 Q \bar{Q}}{(\delta s)^{2}} . \tag{2}
\end{equation*}
$$

(ii) Consider an infinitesimal element $P Q=\delta s$ of c and the geodesic g having this element in common with c, i.e., as Q approaches P as a limit, c and g will approach tangency at P; the immediately following elements of c and g will not in general coincide but will form at Q an infinitesimal angle $\delta \omega$; then §

$$
\begin{equation*}
\kappa=\lim _{Q \rightarrow P} \frac{\delta \omega}{\delta s} \tag{3}
\end{equation*}
$$

Both these definitions lead to the same analytical expression

[^0]for the geodesic curvature κ, viz.,
\[

$$
\begin{align*}
\kappa=\sum_{r t} a_{r t}\left[\frac{d^{2} x_{r}}{d s^{2}}+\sum_{i k}\left\{\begin{array}{c}
i k \\
r
\end{array}\right\}\right. & \left.\frac{d x_{i}}{d s} \frac{d x_{k}}{d s}\right] \tag{4}\\
& \times\left[\frac{d^{2} x_{t}}{d s^{2}}+\sum_{i k}\left\{\begin{array}{c}
i k \\
t
\end{array}\right\} \frac{d x_{i}}{d s} \frac{d x_{k}}{d s}\right]
\end{align*}
$$
\]

where $\left\{{ }_{r}^{i}{ }_{r}\right\}$ is the well known Christoffel symbol of the second kind.

It is the purpose of this note to generalize the above procedure by replacing the geodesic g in (i) by any other curve \bar{c} tangent to c at P, and (ii) by any other curve \bar{c} having an infinitesimal element $P Q$ in common with c.
2. Generalization of the First Definition. We have any two curves c and \bar{c} tangent at P and two equal infinitesimal arc lengths $P Q$ and $P \bar{Q}(=\delta s)$ on c and \bar{c} respectively. Let the coordinates of P be $x_{r}(r=1,2, \cdots, n)$, those of Q and \bar{Q} (developing in powers of δs) be, respectively,

$$
\begin{array}{ll}
x_{r}+x_{r}{ }^{\prime} \delta s+\frac{1}{2} x_{r}{ }^{\prime \prime}(\delta s)^{2}, & (r=1,2, \cdots, n), \\
x_{r}+x_{r}{ }^{\prime} \delta s+\frac{1}{2} \bar{x}_{r}{ }^{\prime \prime}(\delta s)^{2}, & (r=1,2, \cdots, n),
\end{array}
$$

(disregarding infinitesimals of higher order than the second), where the direction of the common tangent at P is given by $x_{r}{ }^{\prime}=d x_{r} / d s(r=1,2, \cdots, n)$, and where $x_{r}{ }^{\prime \prime}$ and $\bar{x}_{r}{ }^{\prime \prime}$ are the values of $d^{2} x_{r} / d s^{2}$ computed at P for c and \bar{c} respectively. The differences of these coordinates are

$$
\frac{1}{2}\left(x_{r}^{\prime \prime}-\bar{x}_{r}{ }^{\prime \prime}\right)(\delta s)^{2}
$$

and hence we have for the distance $Q \bar{Q}$ the expression

$$
(\bar{Q} \bar{Q})^{2}=\sum\left(a_{r t}\right)_{Q}\left(x_{r}^{\prime \prime}-\bar{x}_{r}^{\prime \prime}\right)\left(x_{t}^{\prime \prime}-\bar{x}_{t}^{\prime \prime}\right)(\delta s)^{4} / 4,
$$

where $\left(a_{r t}\right)_{Q}$ represents the values of the coefficients $a_{r t}$ at the point Q, i.e.,

$$
\begin{equation*}
\left(a_{r t}\right)_{Q}=a_{r t}+\frac{d a_{r t}}{d s} \delta s+\cdots \tag{5}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\left[\lim _{Q \rightarrow P} \frac{2 Q \bar{Q}}{(\delta s)^{2}}\right]^{2}=\sum_{r l} a_{r t}\left(x_{r}^{\prime \prime}-\bar{x}_{r}^{\prime \prime}\right)\left(x_{t}^{\prime \prime}-\bar{x}_{t}^{\prime \prime}\right) \tag{6}
\end{equation*}
$$

3. Generalization of the Second Definition. We have any two curves c and \bar{c} having an infinitesimal element $P Q=\delta s$ in common (i.e., as $Q \rightarrow P$, the curves c and \bar{c} will approach tangency at P). The immediately following elements $Q R$ and $Q \bar{R}$ of c and \bar{c} will form an infinitesimal angle $\delta \omega$ at Q. Let the direction $P Q$ have for parameters $x_{r}{ }^{\prime}=d x_{r} / d s(r=1$, $2, \cdots, n$), i.e.,

$$
\begin{equation*}
\sum_{n t} a_{r t} x_{r}^{\prime} x_{t}^{\prime}=1 \tag{7}
\end{equation*}
$$

The directions of $Q R$ and $Q \bar{R}$ may be expressed by the parameters $x_{r}{ }^{\prime}+x_{r}{ }^{\prime \prime} \delta s, x_{r}{ }^{\prime}+\bar{x}_{r}{ }^{\prime \prime} \delta s$ (disregarding infinitesimals of higher order than the first), bound by the relations

$$
\left\{\begin{array}{l}
\sum_{r t}\left(a_{r t}\right)_{Q}\left(x_{r}^{\prime}+x_{r}^{\prime \prime} \delta s\right)\left(x_{t}^{\prime}+x_{t}^{\prime \prime} \delta s\right)=1 \tag{8}\\
\sum_{r t}\left(a_{r t}\right)_{Q}\left(x_{r}^{\prime}+\bar{x}_{r}^{\prime \prime} \delta s\right)\left(x_{t}^{\prime}+\bar{x}_{t}^{\prime \prime} \delta s\right)=1
\end{array}\right.
$$

The angle $\delta \omega$ between these two directions at Q is given by

$$
\cos \delta \omega=\sum_{r t}\left(a_{r t}\right)_{Q}\left(x_{r}{ }^{\prime}+x_{r}^{\prime \prime} \delta s\right)\left(x_{t}^{\prime}+\bar{x}_{t}^{\prime \prime} \delta s\right)
$$

Using the first identity (8), this becomes

$$
\begin{equation*}
\cos \delta \omega=1+\sum_{r t}\left(a_{r t}\right)_{Q}\left(x_{r}^{\prime}+x_{r}^{\prime \prime} \delta s\right)\left(\bar{x}_{t}^{\prime \prime}-x_{t}^{\prime \prime}\right) \delta s \tag{9}
\end{equation*}
$$

Subtracting the identities (8), we have

$$
\begin{aligned}
& 2 \sum_{r t}\left(a_{r t}\right)_{Q}\left(x_{r}^{\prime}+x_{r}^{\prime \prime} \delta s\right)\left(\bar{x}_{t}^{\prime \prime}-x_{t}^{\prime \prime}\right) \delta s \\
& \\
& \quad+\sum_{n t}\left(a_{r t}\right)_{Q}\left(\bar{x}_{r}^{\prime \prime}-x_{r}^{\prime \prime}\right)\left(\bar{x}_{t}^{\prime \prime}-x_{t}^{\prime \prime}\right)(\delta s)^{2}=0
\end{aligned}
$$

and introducing this into (9), we find

$$
\begin{equation*}
\cos \delta \omega=1-\frac{1}{2} \sum_{r t}\left(a_{r t}\right)_{Q}\left(x_{r}^{\prime \prime}-\bar{x}_{r}{ }^{\prime \prime}\right)\left(x_{t}^{\prime \prime}-\bar{x}_{t}^{\prime \prime}\right)(\delta s)^{2} \tag{10}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\cos \delta \omega=1-\frac{1}{2}(\delta \omega)^{2}+\cdots \tag{11}
\end{equation*}
$$

Comparing (10) and (11), we deduce that

$$
\begin{equation*}
\lim _{Q \rightarrow P}\left(\frac{\delta \omega}{\delta s}\right)^{2}=\sum_{r t} a_{r t}\left(x_{r}^{\prime \prime}-\bar{x}_{r}^{\prime \prime}\right)\left(x_{t}^{\prime \prime}-\bar{x}_{t}^{\prime \prime}\right) \tag{12}
\end{equation*}
$$

We note that the right members of (6) and (12) are identical.
4. Relative Curvature. The expression

$$
\begin{equation*}
\sum_{r t} a_{r t}\left(x_{r}^{\prime \prime}-\bar{x}_{r}^{\prime \prime}\right)\left(x_{t}^{\prime \prime}-\bar{x}_{t}^{\prime \prime}\right) \tag{13}
\end{equation*}
$$

has an interesting geometric interpretation. Let us set

$$
A_{r}=\sum_{i k}\left\{\begin{array}{c}
i k \tag{14}\\
r
\end{array}\right\} x_{r}^{\prime} x_{k}^{\prime}
$$

We may then write (13) in the form

$$
\begin{align*}
& \sum_{r t} a_{r t}\left[\left(x_{r}{ }^{\prime \prime}+A_{r}\right)-\left(\bar{x}_{r}{ }^{\prime \prime}+A_{r}\right)\right]\left[\left(x_{t}{ }^{\prime \prime}+A_{t}\right)-\left(\bar{x}_{t}^{\prime \prime}+A_{t}\right)\right] \\
& =\sum_{r t} a_{r t}\left(x_{r}^{\prime \prime}+A_{r}\right)\left(x_{t}^{\prime \prime}+A_{t}\right)+\sum_{r t} a_{r t}\left(\bar{x}_{r}{ }^{\prime \prime}+A_{r}\right)\left(\bar{x}_{t}{ }^{\prime \prime}+A_{t}\right) \tag{15}\\
& -2 \sum_{r t} a_{r t}\left(x_{r}^{\prime \prime}+A_{r}\right)\left(\bar{x}_{t}{ }^{\prime \prime}+A_{t}\right) .
\end{align*}
$$

We here introduce the geodesic curvature κ as given by (4), and the direction of the principal geodesic normal to a curve c at a point P as given by the parameters *

$$
\begin{equation*}
\mu^{(r)}=\frac{1}{\kappa}\left(x_{r}^{\prime \prime}+A_{r}\right), \quad(r=1,2, \cdots, n), \tag{16}
\end{equation*}
$$

so that

$$
\sum_{r t} a_{r t}\left(x_{r}^{\prime \prime}+A_{r}\right)\left(\bar{x}_{t}^{\prime \prime}+A_{t}\right)=\kappa \cdot \bar{\kappa} \sum_{r t} a_{r t} \mu^{(r)} \bar{\mu}^{(t)}=\kappa \cdot \bar{\kappa} \cos \theta
$$

where θ is the angle between the principal geodesic normals to c and \bar{c} at P. Then (15) or (13) takes the form

$$
\begin{equation*}
\kappa^{2}+\bar{\kappa}^{2}-2 \kappa \bar{\kappa} \cos \theta \tag{17}
\end{equation*}
$$

Finally, combining (6), (12) and (17), we have

$$
\begin{equation*}
\lim _{Q \rightarrow P} \frac{2 Q \bar{Q}}{(\delta s)^{2}}=\lim _{Q \rightarrow P} \frac{\delta \omega}{\delta s}=\sqrt{\kappa^{2}+\bar{\kappa}^{2}-2 \kappa \bar{\kappa} \cos \theta} \tag{18}
\end{equation*}
$$

If, in the definitions (i) and (ii) of § 1, we replace the curve c and the tangent geodesic g by any two tangent curves c and \bar{c}, we shall say that the limiting expressions in (1) and (2) define the curvature of c relative to \bar{c} or the relative curvature of c and \bar{c}. We may now state the following theorem.

Given any two curves c and \bar{c} in V_{n} tangent at a point P. Let κ and $\bar{\kappa}$ be their respective geodesic curvatures and let θ be the angle between their principal geodesic normals at P. Then the relative curvature λ of c and \bar{c} at P is given by

$$
\lambda^{2}=\kappa^{2}+\bar{\kappa}^{2}-2 \kappa \bar{\kappa} \cos \theta
$$

Massachusetts Institute of Technology

[^1]
[^0]: * Presented to the Society, February 24, 1923.
 \dagger Throughout this paper all summations extend from 1 to n for the indicated subscripts.
 \ddagger This definition is that given by Voss, Mathematische Anvalen, vol. 16. Cf. Bianchi, Geometria differenziale, 2d ed., vol. 1, p. 363.
 § This definition, or an equivalent one in terms of the parallelism of Levi-Civita, was given by the author in a paper, Sulla curvatura geodetica delle linee appartenenti ad una varietà qualunque, Rendiconti Accademia dei Lincei, vol. 31 (1922).

[^1]: * Bianchi, ibid., p. 364.

