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DETERMINATION OF ALL SYSTEMS OF oo4 

CURVES IN SPACE IN WHICH THE 
SUM OF THE ANGLES OF EVERY 

TRIANGLE IS TWO RIGHT 
ANGLES * 

BY JESSE DOUGLAS 

1. Introduction. Consider the curves which intersect an 
arbitrarily chosen system of oo * curves in the plane under a 
fixed angle a. If a is varied, a system of °o2 curves is ob
tained, termed an isogonal family. Isogonal families are 
characterized by differential equations of the form 

(1) Vu=(T.+ y'Ty)a+yn), 

where T is any function of x and y. 
It is easy to prove synthetically that in all isogonal families, 

and in no other systems of oo2 curves in the plane, the sum of 
the angles of the triangle formed by any three of the curves 
is equal to 7r.f 

A natural family of curves in any space is one obtainable as 
the system of extremals of a calculus of variations problem 
of the form 
(2) ƒ Fàs = minimum, 

where F is any point function.^ In the plane, F is a function 
of x and y, and the Euler-Lagrange equation of (2) is 

(3) y" = (Ly-y'Lx)(l + y'>), 

where L = log F. 
Since the family formed by the oo2 straight lines of the 

plane is both isogonal and natural, and since each of these 
characters is invariant under conformai transformation, every 

* Presented to the Society, April 28, 1923. 
t G. Scheffers, Isogonalkurven, Aquitangentialkurven und komplexe 

Zahlen, MATHEMATISCHE ANNALEN, vol. 60 (1905), p. 504. 
J See E. Kasner, PRINCETON COLLOQUIUM LECTURES (1912), pp. 34-37. 
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curve family conformally equivalent to the straight lines 
must be both isogonal and natural. 

Conversely, for a curve family which is at once isogonal 
and natural, we have by identification of (1) with (3) 

(4) Tx - Ly, Ty= - Lx. 

These equations imply that L — iT and consequently eL~iT 

are analytic functions of x + iy. Since the conformai trans
formation 

xi + iyi = eL~iT, 

transforms eLds into ds\, it converts the extremals of fFds 
= Sehds = minimum into those of fdsi = minimum, that is, 
into the straight lines. 

The conditions (4) can be satisfied only when T is Laplacian. 
I t follows that the property of having the angle sum in each 
triangle equal to 7r is, in the plane, not restricted to the curve 
families derivable by conformai transformation from the 
straight lines. In contrast with this fact, it is the object of 
the present paper to prove the following theorem. 

THEOREM. If a system of GO* curves in space is such that 
in each of its triangles the sum of the angles is equal to IT, then it is 
either the system formed by the oo 4 straight lines of space, or an 
image of that system by a conformai transformation of space, 
namely the oo 4 circles through a fixed point. 

I t is presumed in the statement of this theorem that the 
only systems of oo4 curves in space taken into consideration 
are those that can be defined by a system of two differential 
equations of the form 

(5) y" = Fix, y, z, p, q), z" = G(x, y, z, p, q), 

where p, q represent yf, z' respectively, and where F and G are 
analytic functions of their five arguments. We select a 
region of the x, y, z, p, q continuum, within which each 
of these functions has a branch which is uniform and regular, 
and we restrict ourselves in the calculations that follow to this 
region and to these branches. 
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2. A Triangle with One Infinitesimal Angle. We shall 
use the symbol % to denote any quadruply infinite family of 
curves defined by equations of the form (5). Under the re
strictions just stated, there will pass through each point and 
in each direction a unique curve of $. 

Choose any point 0—denote its coordinates by xQ, yo, z0— 
and let 1 : p0 : q0 and 1 : p0 + Spo - qo + 5go define two direc
tions through 0 infinitely near to one another. These deter
mine in the family g two consecutive curves C% and (72. Let 
the equations of C\ be 

(6) Y=y(X), Z = z(X); 

then those of C2 will be 

Y = y(X) + SpomiX) + hqmiX), 
K) Z = z(X) + dpoUX) + dqoMX), 

where rji, ft and i\i, ft obey the equations of variation of the 
system (5) 

{9S V" = FPT,' + FJ' + FyV + Faft 
W f" = GpV' + 6 ci' + GyV + ö,r, 

and are completely determined by the additional data 

(90 rn(xo) = 0, &(*„) = 0, m'(xo) = 1, ri'(^o) = 0, 
(92) 7?2(*o) = 0, t2(x0) = 0, ife'fo) = 0, ft'fo) = 1. 

It is to be understood that in the coefficients of (8), which 
are originally functions of x, y, z, p, q, we are to substitute by 
means of (6) 

x = X, y = y{X), z = z(X), p = y'{X), q = *'(X), 

so that these coefficients become functions only of X, the 
abscissa along Ci. 

On C\ let any point 1 (x, y, z) other than 0 be selected, and 
let 2{x + ôx, y + ôy, z + àz) be an infinitely near point on 02. 
Through 1 andJ2 there passes a unique curve of the family g; 
designate it as C, and denote by 1 : p: q and 1 : p + ôp :q+ 8q 
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its directions at 1 and 2 respectively. Then 

(10) by = pôx, Sz = ~qôx, 

and 

(11) ôp = Fôx9 ôq = GÔx, 

where the bars over F and G indicate that these functions 
are to be formed for the arguments x, y, z, p, q. 

Allow 1 : p : q and 1 : p + Ôp : q + 8q to represent respec
tively the direction of d at 1 and of C2 at 2; then by differ
entiation of (6) and (7), substitution of the coordinates of 1 
and 2y and use of (5), 

p = y' (x), q = zf{x), 
and 

(12) f ôp = Fôx + ôpovi + ôqom', 
K J [ ôg = GÔx+Ôpott+dqott, 

where the arguments in F, G are the x, y, z, p, q of the point 1 
and curve C\, and in rjx, £/, 972', f2' the argument is x. 

The fact that the curve C2 or (7) contains the point 2 gives, 
with the use of (10), 

(p — p)ôx = 5p0??i + Sgo*72> 
(<? - 9) 5a: = ôp0?i + ôq0Ç2; 

therefore 

,-„. f Sz : ôpo : ôq0 = tó — tó : [(p - £>)& - ( g - g)7?2] 
V ^ 1 : [ - (P - P)fi + (î -"ff)nd. 

In the curvilinear triangle 012 or C\C2C let Sco denote the 
interior angle at 0, 6 the interior angle at 1, and 6+86 the 
exterior angle at 2. Then the condition for an angle sum 
equal to two right angles is 

(14) 50 = ««. 

Now 
1 + PP + qq 

cos 6 
Vl + p 2 + g 2 V l + p2 + q2 
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Therefore 

sin 050 = 

(15) X 

_ i + vv + gg 
Vl + p2+~g2Vl + p2 + g2 

ƒ fffrp + qhq + p5ff + g5g 
{ 1 + pp + qq 

php + qbq php + qôq 
1 + p2 + q2 1 + p2 + q2 

where the value of sin 0 is 

(16) V^g 2 ) (p~p) 2 ~2^(p~p)7Fg)^l+ : ?Kg-g) 2 

Besides, 

(17) Sco = 

Vl+p2+g2Vl+p2+g2 

V(l + go2)5p0
2 — 2poqodp0dqo + (1 + Po2)hq0

2 

1 + Po2 + go2 

Combining the equations (14) to (17), we have 

pop + qhq + pàp + gôg 
- (1 + pp + qq) 

(18) 

1 
1 + Po2 + go' 

1 + pp + qq 
php + qôq php + qhq 
1 + p2 + g2 1 + p2 + g2 

V(l+go2)^o2~2p0goSpoôgo+(l+Po2)5go2 

X V(l+g2)(p~p)2~2pg(p-p)(g-g)+(l + p2)(g-g)2 . 

By means of the substitutions indicated by (11) and (12), 
the use of (13), the introduction of 

(19) 
0 = 

* = 

(l + g 2 ) F - p g g j 

1 + p2 + g2 

-pqF+ (l + p2)G 
1 + P2 + g2 

also of symbols a;* to represent the two-rowed determinants 
in the matrix 

h i fi vi fi'l 
I 2̂ ?2 V2f & I 
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as follows, 

«i = 0?f), co2 = (rjri'), 0)3 = (r/H, 

and of 

Qi = (1 + g 2 M + pgco5, 

^2 = — (1 + g2)^2 + pqwz ~ pgco4 — (1 + £>2)o>5, 

fi3 = pg^2 — (l + p2)u3, 

finally of 

f I = (1 + Po2)??i2 + 2p0?oW72 + (1 + go2)*722, 

(20) j 77 = (1 + pQ
2)viti + Poqoivih + 1^1) + (1 + go 2) tó , 

[77/ = (1 + po2)fi2 + 2 W of i r 2 + (1 + go2)f2
2, 

the condition (18) reduces to 

(1 + p2 + g>i{fo - <f>)(fi -p)+&- *)(? ~ q)\ 
+ fix(p - p)2+ fl2(p - p)(g - g) + fi3(g - g)2 

l_i_^>2_l_(72 

(21) = 1+tf+tf <JlII<P-p)*-2II<fi-p)(q-q) + I(q-q)* 

x v ^ g 2 ) ^ - ^ 2 - ^ ^ ^ ) ^ ^ ( 1 + P ^ K F ^ ? : 
I t is to be observed that coi, Oi, 122, O3, and 7, 77, 777 are 

independent of p, g. 
Since the right member of (21) and the second line of the 

left member are homogeneous functions of the second degree 
in p — p, q — g, the same must be true of 

(22) ( £ - 0)(p - p) + (if- i«(? - g). 

By Taylor's theorem, 

0 - 0 = 0 p ( p - p ) + ^ g ( g - g ) 

+ è { 0 p p ( p - p ) 2 + 2 0 p g ( p ~ p ) ( g - g ) + 0 ^ ( g - g ) 2 Î H , 

^-\l/=ipp(p-p)+^q(q-q) 

+ * { ^ p ( p - p ) 2 + 2 ^ 9 ( p ~ p ) ( g - - g ) + ^ a , ( g - g ) 2 } + - - . 

Necessary conditions that (22) be homogeneous of the 
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second degree in p — p, 'q — q are seen to be 

<j>pp = 0, 2 cj>pq + ^pp = 0, cj)qq + 2 ̂ pfl = 0, \[/qq = 0, 

a system of partial differential equations whose solution is 

(23) 0 = /3g2 - ypq + Xp + ixq + v, 

and these forms of <j>, \f/ are seen to be also sufficient for the 
condition in question. |8, 7, X, etc. are functions only of x, y, z. 

The left member of (21) now becomes a rational entire 
function of p — p, q —• q; in order that the same be true of 
the right member we must have 

(24) I " UI 

1 + p2 pq 1 + q2 

By means of (8), (9), and (20), I, II, III can be expressed 
as power series in t — x — x0; we find 

7 = (1 + p0
2)f + {(1 + P o W + WZo*7}*3 + • • -, 

77 = Wo*2 + {(1 + Po2)Gp° + p0q0(Fp° + G8°) 
^ ' + (1 + <?o2)7W + •••, 

777 = (1 + qo2)t2 + {PoqoGpo + (1 + g0
2)Gs

0}*3 + • • •. 

Furthermore, 

l + p2 = 1 + Po2 + 2p0F0t + - . . , 
(26) pg = poqo + (poGo + q0F0)t + ••-, 

l + ? 2 = 1 + qo2 + 2q0G0t + . . . . 

When, after dividing the members of (25) by the corre
sponding ones of (26), we equate coefficients of ts, we obtain 

(1 + P2)FP + pgFg - 2pF 
1 + P2 

(vn _a+P2)GP+pq(Fp+Gq)+(l+q*)Fg-(pG+qF) 
( 2 7 ) Ypq 

_ pgGp + (1 + q2)Gq - 2qG 
1 + q2 
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where the subscript and superscript 0 has been dropped with 
evident justification. 

Writing 

K J Ö = ;p# + (1 + <Z2W, 

obtained by reversion of (19), and then applying the values of 
</) and \[/ given by (23), we find that (27) imposes the conditions 

v = ft v' = y, X' = 0, M = 0, X = M', 

which by (23) and (28) reduce F and G to 

F= ( /S -apXl + ^ + ç 2 ) , 
K J G= ( 7 - a g ) ( l + p»+g«), 

where we have replaced X = jit' by — a. 

3. 2TA0 oo3 Surfaces 2. Relative to the oo4 straight lines of 
space there is a family of oo3 surfaces, namely the planes, of 
which the straight lines are the mutual intersections. Not 
every system of oo4 curves in space has a so related family of 
oo3 surfaces. We have found the necessary and sufficient 
conditions to be 

Fq(Fp + Gq) + 4F, - 2Fq' = 0, 
(30) FJ - Gq

2 + 4(Fy - Gz) - 2(FP' - Gq') = 0, 
GP(FP + Gq) + 4Gy - 2GP' = 0. 

The accent denotes the operator 

d . d . d , r, d . n d 
T-+pir+q1r + Fir+G1- -
ox ay dz dp oq 

Let A be any point of space, through which à\ and <4 are 
any two directions, and let Ti and T2 denote the curves of the 
family % which pass through A in these directions respectively. 
Choose arbitrarily a point B on I \ and a point C on T%. There 
is a unique curve BC of % which passes through B and C. 

On BC let D be any point. Suppose the curve determined 
by A and D to have at A the direction d. 

Then under the hypothesis of an angle sum in every triangle 
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equal to w, the direction d must belong to the flat pencil 
determined by d± and d2. For by applying this hypothesis to 
the triangles ABD, ACD, ABC, it may be deduced that 

^ did + 4 dd2 = -2Ç did2, 

which implies that d is coplanar with di and c .̂ 
The curves of % which radiate from A in the directions of 

the pencil determined by di and d% form a surface 2. By the 
above, 2 contains AD; therefore it contains D; therefore it 
contains the curve BC, since D was an arbitrary point of BC. 

Now B and C were arbitrary points on I \ and T2 respectively. 
It follows that through each pair of intersecting curves of g 
there passes a surface 2 which carries co2 curves of $. It is 
easy to see how this implies that the 004 curves of % are the 
mutual intersections of 003 surfaces. 

The functions F and G, so far reduced to the forms (29), 
must therefore obey (30). The imposition of (30) restricts F 
and 0 further, namely to the forms 

(31) 
F= (Lv - VLX){1 + f + ç2), 
6= ( I . - gi,)(l + p2 + q2), 

where either 

(32a) L = f(x* + 2/2 + 22), 

or 

(326) L = g(y). 

In the reduction of L, use is made, in general, of a transforma
tion of the axes. 

In other words, the differential equations of % are now 
reduced to one or the other of the forms 

(33a) y"=p(y-y'x)(l+y'2+z'2), 
z"=p(z-z'x)(l+y'2+za), p=2/V+2/ 2 +z 2 ) ; 

(336) 2/" = <7'(2/)(l + 2/'2 + A 
z" = 0. 
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X 

1 
0 

y 
y' 
y" 

z 
z' 
z" 

4. Final Conditions. We consider first (33a). Its two 
equations can be combined so as to give 

= o, 

whose general integral is Ax + By-\- Cz = 0, where A, B, C 
are arbitrary constants. It follows that each curve of % lies 
in a plane that passes through the origin 0. The oo 2 curves 
of % carried by each surface 2 are therefore the sections of 2 
by the planes through 0 (provided that 2 is not itself a plane 
through 0 *). 

We next observe that the equations (31) are the Euler-
Lagrange equations for feLds — minimum. But if a curve 
on a surface 2 is an extremal of feLds relative to space, it is 
a fortiori an extremal relative to 2. Thus the oo2 curves on 
2 form, according to the definition in § 1, a natural family on 2. 

Imagine 2 to be represented conformally on the plane. 
Then this natural family on 2 goes over into a natural family 
in the plane. For conformai transformation multiplies ds by 
a point function; therefore the extremals of an integral of the 
form J* point function • ds are transformed into the extremals 
öf an integral of the same form. 

Moreover, in this family of oo2 curves in the plane the 
sum of the angles of every triangle is equal to w; the family is 
therefore isogonal as well as natural. By § 1, it is therefore 
convertible into the oo2 straight lines by a conformai transfor
mation of the plane. In this way, it is possible to convert the 
original system of oo2 curves on 2 into the straight lines of 
the plane by a conformai representation of 2 on the plane. 

We have therefore to deal with the following problem: 
If 0 is a point of space, and 2 a surface not a plane through 0, 
what is implied by the circumstance that 2 admits of a 

*Each curve of g belongs to oo1 surfaces 2. These cannot all be 
planes through O unless the curve is a straight line through 0, a case 
which may be laid aside without affecting the validity of our ultimate 
conclusion. 
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conformai representation on the plane in which its <x>2 sections 
by the planes through O go over into the <x>2 straight lines of 
the plane? 

We say that S must be either a plane, or else a sphere 
passing through 0. 

For consider any minimal line of the plane. In the con-
formal representation it must correspond to a curve on 2 
which (1) is a plane curve, (2) has zero length. A plane curve 
of zero length is necessarily a minimal straight line. The 
surface 2 therefore carries two systems of minimal straight 
lines. 

A surface doubly covered by minimal straight lines is either 
a plane or a sphere. If S is a plane, the condition in question 
is satisfied without further restriction. 

But if S is a sphere, it must, in addition, pass through 0. 
For the angle sum in a triangle formed by three circles on a 
sphere, whose planes intersect in a point 0, is greater than TT 
if 0 is interior to the sphere, and less than ir if 0 is exterior to 
the sphere. Moreover, the condition S is a sphere which 
passes through 0, is a suflScient one, for then the stereographic 
projection of 2 from 0 as pole is a conformai representation 
of 2 on the plane which converts the sections of 2 by the 
planes through 0 into straight lines. 

It follows that each curve of % must be either a straight 
line, or a circle through 0. Since each of the three curve 
families $, the straight lines of space, the circles through 0, 
is an irreducible analytic manifold of four dimensions, % must 
be identical either with the oo4 straight lines of space, or 
with the oc4 circles through 0. 

The case (336) can by a similar argument be proved to 
lead only to the straight lines. 
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