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ANALOGIES BETWEEN THE un, vn OF LUCAS 
AND ELLIPTIC FUNCTIONS* 

BY E. T. BELL 

1. Historical Note. The un, vn of Lucas are the symmetric 
functions (n any real integer) 

an _ fin 
Un = §- , Vn = an + /3», 

a — p 
of the roots a, (3 of x2 — px — q, where p, q are relatively 
prime integers, so that 

{uQ, ui) = (0, 1), Oo, vi) = (2,.p), 

and un, vn are integers satisfying the recurrence 

#w+2 = pXn+l qXn. 

The numerous remarkable properties and applications of 
these integers due to Lucas and others are summarized in vol. 1, 
chap. XVII of Dickson's History. From another source it is 
known that as early as 1878 Lucas had applied principles 
similar to those of his fundamental memoir f to symmetric 
functions of the roots of any algebraic equation and that he 
had obtained the connection of these, through the intermediary 
of elliptic and abelian functions, with the theory of numbers. 
This connection is still to be sought. In 1912 the writer was 
informed by the late C. A. Laisant, at one time a trustee of 
Lucas' manuscripts, that there was nowhere in them a vestige 
of the subject. Nevertheless Laisant recalled vividly that 
Lucas, about 1878, made a verbal communication to the 
Société Mathématique de France in which he exhibited a close 
isomorphism between three symmetric functions, of which one 
was an + /5n + 7 n , of the roots a, ft 7 of a cubic equation 
and the elliptic functions sn, en, dn, especially as regards a 
species of double periodicity. All traces of this communica-

* Presented to the Society, September 18, 1923. 
t AMERICAN JOURNAL, vol. 1 (1878), p. 184. 

26 



402 E. T. BELL [Nov., 

tion, also the sense in which the symmetric functions were 
doubly periodic, have been lost. 

Laisant also is authority for the statement that the ultimate 
object of Lucas in his researches on recurring series was the 
demonstration of Fermâtes last theorem. He recalled that in 
1890, shortly before Lucas' death, the latter, "in less than a 
quarter of an hour," reduced the proof of Fermat's theorem 
to the problem of showing that each of his symmetric functions 
had not more than two "periods." Laisant remarked that 
at the time he perfectly followed this reduction, which was 
clear and convincing. This adds another puzzle to the many 
already surrounding Fermâtes theorem. 

In his memoir Lucas insists strongly on the isomorphism 
between his un, vn when q = 1 and the circular and hyperbolic 
functions. Later {Théorie des Nombres, p. 319) he obtains 
this isomorphism by a simpler method, deriving the initial 
correspondence directly from Simpson's recurrences for the 
sine and cosine. This particular device does not seem to be 
capable of extension. The significant fact, however, appar­
ently is that the correspondence thus established is between the 
multiplication theory of the circular or hyperbolic functions and 
un, vn. For on page 203 of his memoir he concludes a section 
with " the demonstration of formulas of extreme importance; 
for they will serve us later as the base of the theory of doubly 
periodic numerical functions deduced from the consideration 
of symmetric functions of the roots of equations of the third 
and fourth degrees with commensurable coefficients." These 
are the formulas (A), (Af) below. We shall see that {A') is 
incorrect, but that (A), which is correct, corresponds to classi­
cal formulas in the real multiplication of elliptic functions and 
to recent results in the theory of complex multiplication. 
The problem seems to narrow down to connecting (A) in 
some simple manner with the symmetric function sn = an 

+ jön + 7n, for any solution of #n+3 = pxn+2 — qxn+i + rxn is 
of the form a0sn + aisn+i + (hSn+i, where a, @, y are the 
roots of xs = px2 — qx + r. I t may be worth noting that 
some of the elliptic functions that occur in the analogies are 
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precisely those which present themselves in the conversion of 
the square root of a polynomial of the third or fourth degree 
in x into a continued fraction. In this connection we may 
also call attention to the remarks of Lucas at the end of § X, 
Théorie des Nombres, p. 508. Possibly the analogies noted 
below may offer a clue to what Lucas had in mind. 

2. Analogies with Elliptic Functions. Having proved the 
formula 

(A) 

Lucas states that in the same way we have 

(A') Vn
2 flm-l?Wfl ~ Am2 Vtir-lVfi+1 = — Aq^hmr-nVm+n, 

where A = (a — /3)2 = p2 — 4g, and he puts m = n + 1, 
n + 2 in (A), getting 

Ur?un+1un+z — un+2
2 un-iun+i = q^^WWm+i-

He states that " the formulas (A) and (B) belong to the theory 
of elliptic functions, and, more especially, to the functions 
which Jacobi has denoted by 9, H." 

To see that (A') is incorrect we need consider only the case 
in which q = 1, so that v_n = vn. If m, n be interchanged in 
(A') the left changes sign while the right does not. Instead 
of (A') we should have 

(A") Vn
2Vm-iVm+l — Vm2Vn-lVn+l = ~ &2qn~lUm-nUm+n. 

To obtain the analogies with elliptic functions let 

(1) I(a -~ b, a — c, a — d, • • •) = 0 

be an identity between the differences of a, b, c, d, • • •, and 
define a function fXf y of two variables x, y by 

(2) fx, y = &(ƒ*, I - ƒ„, l), 

where k =̂  0 and I are arbitrary. Then (1) implies that 

\^a,&' k^a,c' k^a'd' ) " ° ; 
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and, in particular, from 

(a - b)(c - d)+ (b- c)(a - d) + (c - a)(b - d) = 0, 

we infer 

(3) faffed 4" fb,cfa,d + fc,afb,d = = 0. 

If now there exist functions ^ , A» such that 

(4) f.,y = r?**9"-* 
It/xlvy 

where r is independent of x, y, we have g-x = — ̂ , since 
fx, y = — ƒ&,*, and (3) becomes 

( 5 ) 9a+b9a~b9c+dQc-d + Çb+cÇb-cÇa+dÇa-d + Qc+aQc-aÇb-i-dQb-d = 0. 

From its derivation (5) is a consequence of (2) and (4) alone; 
that is, (5) is implied by 

(Q) 9x-l9v+l __ 9v-l9v+l = 9xj-y9x-y 
hxhi hyhi khxhy 

and in particular (5) is implied by 

(7) gy
2gx-\9x+i — gx

2gy-igy+i = 9i29x+v9x-y, 

which is obtained from (6) by putting k = I = 1, hx— gx
2* 

Conversely, (5) implies (7), for (5) becomes (7) when 

(a,b,c,d) = (1, x, y, 0). 

From a given solution gx = px of (5) and (7) we can obtain 
several more by devices familiar in the multiplication theory 
of elliptic functions. Thus, since the sum of the squares of 
the suffixes of the ^ s in (5) is 2(a2+b2+c2+d2) for each term, 

9x = Vxjhf2 

is also a solution of (5) and (7). 

Henceforth, as in establishing the correspondence between 
un, vn and the circular or hyperbolic functions, we take q = 1, 
so that now 

(8) U-n = — Un, «-n = «n-

From the second of (8), it follows at once that gx = vx is not 



1923.] LUCAS AND ELLIPTIC FUNCTIONS 405 

a solution of (5). If (A') were correct the contrary would be 
the case. 

Let a, by c, d, m, n, x, y denote real integers. Then gx = ux 

is a solution of (7), as is seen from (A), and hence also of (5), 
since u\ = 1. To preserve the double homogeneity of (5) and 
its consequences we retain all powers of U\ arising from special 
choices of a, b, c, d. Thus the formulas (JS) should be written 

Write Jacobi's H(a) = H, H(na) == Rn (n ^ 1). Then for 
gx = H^, (5) becomes a well known form of Jacobi's theta 
elation, so that H* is a solution of (7). This verifies Lucas' 

statement that (A), (B) belong to the theory of the H function 
(with q = 1 and the above modification (B') of (5)). A 
somewhat closer analogy is given by the solutions 

g9 ES Vx s H*/H*2, gx s ^ E= H,H^2"4)/4/H2
(^1) /3 

of (5), f» being the familiar elliptic function occurring in the 
theory of Poncelet polygons. In these cases, analogously to 
(uo, ui) = (0, 1), we have 

(i/o, Vi) = (fo, fi) = (0, 1). 

Analogies with the Weierstrassian 

<j(nz) ss <rn, p(nz) s pn 

are obtained by means of the well known 

which is fundamental in the theory of real multiplication. 
For gx s \px is a solution of (5), and (^0, ^i) = (0, 1). Other 
solutions are Halphen's 

yx 5E ^ / ^ C ^ l ) / 8 f 5 x s y^y^W/y^*-!)!*, 

for which (70, 7i, T2) = (So, 81, §2) = (0, 1, 1). In transposing 
formulas relating to 7, 5 into terms of u, all powers of 52, 72 
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must be retained, since Wi = 1 (when q = 1) only when p = 1. 
The solution gx = <rx of (5), giving Weierstrass' equation of 
three terms, yields analogies between ux and <rx. The function 
yx is that occurring in the conversion of the square root of a 
polynomial of the third or fourth degree into a continued 
fraction; öx is used in abridging the computation of ymn. 
In this last there is a resemblance to the process by which 
Lucas converts his ux, vx formulas into others concerning 
umx, vmx. The usual methods for calculating yx as a polynomial 
in 73

3, 74 can evidently be carried over bodily to the compu­
tation of ux. More generally, we see from the foregoing 
solutions of (5) that any relation between any one of H^, rjx, Çx, 
&X, ipx, 7x, Sx for different ranks x can be transposed into a 
relation between uxs of the same ranks. The converse does 
not hold; only such properties of ux are translatable into 
terms of H*, • • •, ôx as can be obtained from (5) alone. A 
correspondence between g/s and u's is established by means 
of the functions — pXi y, uXl y of two arguments x, y (of which 
y does not assume the value zero), 

^ ! .1.8,1,2 

= UX+yUX-y _ 
WXf y 2 2 » V* 

Ux wy 

Although Lucas did not consider ux when a: is a complex 
number, we see at once that (5) is valid when q = 1, a, b, c, d 
are complex, and gx = ux. I t has recently been shown by 
Berwick * that the same relation (5) holds for certain functions 
x// upon which the complex multiplication of p(z) depends. 
Thus ux has analogies in both the real and the complex multi­
plication of elliptic functions. 
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* PROCEEDINGS OP THE LONDON SOCIETY, vol. 19 (1920), p . 153. 


