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FUNCTIONS 
WITH AN ESSENTIAL SINGULARITY* 

BY PHILIP FRANKLIN 

1. Introduction. In this note we prove certain properties 
of functions possessing essential singularities. The results 
grew out of an attempt to prove that the equation 

sin x = x 

has an infinite number of complex roots. This particular 
fact can be deduced very simply from Picard's theorem 
(see Theorem VI below), but it suggests other inferences 
which are much less immediate. The character of the 
theorems, which are given explicitly below, may be in­
dicated by observing that they prove the existence of an 
infinite number of roots of the following typical equations: 

xse** + 3x = 0, 
2x + l 

cos x * 7 — 0, 
x"—4 

sec x-\-bx = 0. 
2. A Corollary to Picard's Theorem. One possible 

formulation of Picard's theorem is the following :t 
If the function f\x) has an essential singularity at the 

point P, and in some deleted neighborhood of P is analytic 
except for a finite number of poles and has only a finite 
number of zeros, then the equation 

f{x) — a = 0 

has an infinite number of roots in the neighborhood in 
question for all values of a different from zero. The 
proposed corollary follows. 

THEOREM I. If the function f (x) has an essential singularity 
at the 'point P, and in some deleted neighborhood of P is 

* Presented to the Society, May 3, 1924. 
f Cf., e. g., Osgood, Funktionentheorie, 2d éd., vol. 1, p. 709. 



158 PHILIP FRANKLIN [March-April, 

analytic except for a finite number of poles and has only 
a finite number of zeros, while the function A(x), not identically 
zeroj is analytic except for poles in the complete neighborhood 
of P , then the equation 

fix)-A(x) = 0 

has an infinite number of roots in this neighborhood. 
To prove this, consider the function f(x)/A(x). This 

function is analytic except for poles in the deleted neigh­
borhood of P , and has an essential singularity at P . Further, 
it has at most a finite number of zeros and poles in the 
neighborhood in question, since both fix) and A(x) have 
at most a finite number of zeros and poles there. Thus, 
by the theorem of Picard just stated, the equation 

f(x)/A(x)—l = 0 

must have an infinite number of roots. Moreover, since 
A(x) has only a finite number of poles, the equation 

A(x)[f(x)/A(x) — 1] ZEL/(X)—A(X) = 0 

must in consequence have an infinite number of roots, 
which proves our contention. 

3. Applications to Entire Functions. We may obtain 
a simplified statement of our theorem by specializing it 
somewhat. Let us take the point P at infinity, the deleted 
neighborhood as the proper plane, and require the function 
to have no poles. The function is then an entire function, 
and the theorem takes the following form. 

THEOREM II . IfE(x) is an entire function {not a polynomial) 
ivith only a finite number of zeros, and E(x) is a rational 
function (not identically zero), the equation 

E(x)—E(x) = 0 

always has an infinite number of roots. 
If we further restrict E(x) to be a polynomial, and notice 

that changing a finite number of the coefficients in the 
Maclaurin's expansion of a function is equivalent to adding 
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a suitably chosen polynomial to it, we obtain the following 
remarkable theorem. 

THEOREM III . If an entire function has at most a finite 
number of zeros, any function formed from it by changing 
a finite number of the coefficients in its Maclaurins ex­
pansion has an infinite number of zeros. 

A statement equivalent to Theorem III is the following one. 

THEOREM I l i a . If an entire function is known to have 
only a finite number of zeros, and the coefficients of its 
Maclauriri s expansion from a certain point on are known, 
the preceding ones are uniquely determined. 

It is interesting to observe that the assumption that there 
actually exists an expansion with the desired properties is 
necessary for the truth of the theorem. That is, we can 
not start with any infinite expansion, and determine the 
earlier coefficients so as to give a function with only a 
finite number of zeros, as one might suppose. For example, 
if the terms following the mth are 

K{x) = ^ (2n + l)! ' 
no choice of the earlier terms will give a function which 
does not have an infinite number of zeros. This follows 
from Theorem V below, since K(x) is the remainder in the 
expansion of sin x. 

4. The Generalized Corollary. There is an extension of 
our corollary, analogous to the extension of Picard's theorem 
to the case in which the function has an infinite number 
of poles and fails to take on two values more than a finite 
number of times. The extension is as follows. 

THEOREM IV. If the function f (x) has an essential singu­
larity at the point P, which is a cluster point of poles, other­
wise being analytic in some neighborhood of P, and takes on 
two distinct values a and b at most a finite number of times 
in this neighborhood, ivhile the function A{x) is analytic 
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except for poles in the complete neighborhood of P, and is 
not identically equal to a or b, then the equation 

f(x)-A{x) = 0 

has an infinite number of roots in the neighborhood in question. 

To prove this, we first observe that the function 

fix) — a , b — a 

has an essential singularity at P (since a and b are distinct), 
and that it has at most a finite number of zeros and poles 
by our hypothesis as to fix). Likewise the function 

A(x) — a 
A{x) — b 

is analytic except for poles in the complete neighborhood 
of P, and is not identically zero. Thus the equation 

fix)—a Ajx) — a 
T&y-b _ A(x) — b ~~ 

satisfied the hypothesis of Theorem I, and hence has an 
infinite number of roots. 

Next consider 

[fjx)-b][Ajx)-b] \f(x)-a A(x)-al = 
a — b [fix) — b A(x) — b\ 

Any value of x which satisfies the previous equation will 
satisfy this one, unless it is a pole of one of the outside 
factors. But such a value would have to be a pole of fix) 
or A(x), and from the form of the previous equation, we 
see that it would have to be a pole of both, if of either. 
Thus all the roots lost are included in the poles of A(x)} 

and since this function has at most a finite number of poles, 
the equation last written has an infinite number of roots. 
Since this equation reduces to 

f(x)-A(x) = 0, 
the theorem is proved. 



1925.] ESSENTIAL SINGULARITIES 161 

Both Theorems I and IV may be slightly strengthened 
by replacing the function A{x) by two functions. The 
revised statement of Theorem IV is as follows: 

THEOREM IVa. If the function f(x) has an essential 
singidarity at the point P, which is a cluster point of poles, 
otherwise being analytic in some neighborhood of P, and 
takes on tivo distinct values a and b at most a finite number 
of times in this neighborhood, while the functions A(x) and 
B(x) are analytic except for poles in the complete neigh­
bor]hood of P, and A(x)lB(x) is not identically equal to a 
or by then the equation 

B(x)f(x)—A{x) = 0 
has an infinite number of roots. 

This follows at once from Theorem IV, since that theorem 
may be applied to the equation f(x) — A(x)/B(x) = 0. 
The analogous strengthened form of Theorem I is some­
what similar to a theorem given by Borel for entire functions 
of finite genus, where our functions A(x) and B(x) are 
required to be polynomials.* 

5. Applications to Periodic Functions. A periodic function 
which is not a constant must have an essential singularity 
at infinity. Hence the preceding theorems may be used 
to derive theorems about periodic functions. In fact, the 
periodicity enables us to weaken the hypothesis. We have, 
for example, the following theorem. 

THEOREM V. If f(x) is periodic, is not a constant, and 
has no poles, while Aix) is analytic except f or poles in some 
complete neighborhood of infinity, and is not a constant, 
then the equation f(x)—A(x) = 0 has an infinite number 
of roots in the neighborhood in question. 

If the theorem were false, the equation 
f(x)~A(x) = 0 

would have only a finite number of roots, and its left 
member would satisfy all the conditions required of 

* Leçons sur les Fonctions Entières, 1921, p. 90. 
i l 



162 PHILIP FRANKLIN [March-April, 

the function f(x) of Theorem I. Likewise the function 
A(x-\-p)—A(x), where p is the period of f{x\ would 
satisfy all the conditions required of the function A(x) of 
that theorem. It is not identically zero since A(x), being 
analytic or having a pole at infinity, and not being a 
constant, is not periodic. Thus by Theorem I, the equation 

[fix)—A(x)]-[A(x+p)—A(x)] = 0 

would have an infinite number of roots. But, since 

f(oo) = f(x+p), 
this equation is equivalent to 

f(x+p)—A(xJ
rp) = 0, 

which accordingly has an infinite number of roots. Since 
this would necessitate the existence of an infinite number 
of roots for the equation 

f(x)—A(x) = 0, 

it contradicts our assumption, and the theorem is proved. 
For one special choice of the function A(x), we may 

weaken the restriction on f(x) still further, so as to obtain 
the following theorem. 

THEOREM VI. If f{x) is periodic and not a constant, the 
equation 

f(x)—ax = 0 

always has an infinite number of roots. 
For, if the equation fix)—ax = 0 had only a finite 

number of roots, so would 

f(x-\-np)—a{x-\-np) = 0, 

p being the period of f(x\ and n being any integer. Since 
this is equivalent to f(x)—ax = anp, we would have a 
function with an essential singularity which failed to take 
on all the values anp more than a finite number of times, 
which contradicts Picard's theorem. 
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