THE TENSOR CHARACTER OF THE GENERALTZED KRONECKER SYMBOL*

BY F. D. MURNAGHAN

1. Introduction. In a previous papert we have considered the use of the generalized Kronecker symbol $\delta_{s_{1} s_{2} \ldots s_{m}}^{r_{1} r_{2} \ldots r_{m}}$ in presenting the theory of determinants and we now proceed to show that it is an arithmetic tensor of the type indicated by its subscripts and superscripts, i. e., it is covariant of rank m and contravariant of rank m. By the statement that a tensor is arithmetic, we mean that its presentation is independent of the particular coordinate system in use and that it has the same numerical values for its various components at all points of space. \ddagger

The generalized Kronecker symbol may be defined by means of the equation

$$
\delta_{s_{1} s_{2}}^{r_{1} r_{2}} \cdots r_{s_{m}}=\left|\begin{array}{ccc}
\delta_{s_{1}}^{r_{1}} & \cdots & \delta_{s_{m}}^{r_{1}} \tag{1}\\
\delta_{s_{1}}^{r_{2}} & \cdots & \cdot \\
\cdot & \cdots & \cdot \\
\cdot & \cdots & \cdot \\
\cdot & \cdots & \cdot \\
\delta_{s_{1}}^{r_{m}} & \cdots & \delta_{s_{m}}^{r_{m}}
\end{array}\right| .
$$

Here the labels r and s run independently over a set of n numbers $1,2, \cdots, n$ and $\delta_{s}^{r}=1$ if $r=s$, and $=0$ if $r \neq s ; \delta_{s}^{r}$ is the ordinary Kronecker symbol and it is usually denoted by g_{s}^{r} in the theory of relativity. It is there derived as the scalar product of the metric tensor $g_{r s}$ and its reciprocal $g^{r s}$, but this mode of presentation is somewhat

[^0]unfortunate since the tensor character of the symbol has nothing to do with the metric properties of the space.

The simplest procedure in proving the tensor character of the symbol $\delta_{s_{1} s_{2} \ldots s_{m}}^{r_{1} r_{2} \ldots r_{m}}$ is first to prove the theorem when $m=n$, the number of dimensions of the space. To do this we shall define a tensor of rank $2 n$, contravariant of rank n and covariant of rank n, by the statement that its presentation in a particular coordinate system ($x^{1}, x^{2}, x^{3}, \cdots, x^{n}$) is furnished by the values of the generalized Kronecker symbol $\delta_{s_{1} s_{2} \ldots s_{n}}^{\gamma_{1} \gamma_{2} \ldots r_{n}}$. Denoting the presentation of this tensor in any other coordinate system $\left(y^{1}, y^{2}, \cdots, y^{n}\right)$ by $\varepsilon_{s_{1}}^{r_{1} r_{2} \ldots s_{n}}$, , we have to show that

$$
\begin{aligned}
& \varepsilon_{s_{1} s_{2}} \cdots s_{n} r_{n} r_{2} \ldots r_{n}
\end{aligned} \delta_{s_{1} s_{2} \ldots s_{n}}^{r_{1} r_{2} \ldots r_{n}}
$$

where the labels $\left(r_{1}, r_{2}, \cdots, r_{n}\right)$ and $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ may each be assigned independently any one of the values $(1,2, \cdots, n)$. We have, from the definition of a tensor,

$$
\underset{s_{1} s_{2} \ldots s_{n}}{\varepsilon^{r_{1} r_{2} \ldots r_{n}}=\delta_{\beta_{1} \beta_{2} \ldots \beta_{n}}^{\alpha_{1} \alpha_{2} \ldots \alpha_{n}} \frac{\partial y^{r_{1}}}{\partial x^{\alpha_{1}}} \cdots \frac{\partial y^{r_{n}}}{\partial x^{\alpha_{n}}} \frac{\partial x^{\beta_{1}}}{\partial y^{s_{1}}} \cdots \frac{\partial x^{\beta_{n}}}{\partial y^{s_{n}}}, \underline{s_{1}}}
$$

where we have adopted the convention of the previous paper (A), according to which Greek labels occurring twice in any term indicate summations. Writing*

$$
\underset{\beta_{1} \beta_{2} \ldots \beta_{n}}{\delta_{1}^{\alpha_{1} \alpha_{3} \ldots \alpha_{n}}=}=\begin{gather*}
1 \tag{2}\\
n! \\
\delta_{\lambda_{1} \lambda_{2} \ldots \lambda_{n}}^{\alpha_{1} \alpha_{2} \ldots \alpha_{n}} \delta_{\beta_{1} \beta_{2} \ldots \beta_{n}}^{\lambda_{1} \lambda_{2} \ldots \lambda_{n}}
\end{gather*}
$$

we have

$$
\begin{aligned}
& \varepsilon_{s_{1} s_{2} \ldots s_{n}}^{r_{1} \gamma_{2} \ldots r_{n}} \\
& =\frac{1}{n!}\left(\delta_{\lambda_{1} \lambda_{2} \ldots \lambda_{n}}^{\alpha_{1} \alpha_{2} \ldots \alpha_{n}} \frac{\partial y^{r_{1}}}{\partial x^{\alpha_{1}}} \cdots \frac{\partial y^{r_{n}}}{\partial x^{\alpha_{n}}}\right)\left(\delta_{\beta_{1} \beta_{2} \ldots \beta_{n}}^{\lambda_{1} \lambda_{2} \ldots \lambda_{n}} \frac{\partial x^{\beta_{1}}}{\partial y^{s_{1}}} \cdots \frac{\partial x^{\beta_{n}}}{\partial y^{s_{n}}}\right) .
\end{aligned}
$$

Now the expression on the right hand side is a summation of products of two factors of the type
$\delta_{l_{1} l_{2} \cdots l_{n}}^{\alpha_{1} \alpha_{2} \ldots \alpha_{n}} \frac{\partial y^{r_{1}}}{\partial x^{\alpha_{1}}} \cdots \frac{\partial y^{r_{n}}}{\partial x^{\alpha_{n}}} \quad$ and $\quad \delta_{\beta_{1} \beta_{2} \ldots \beta_{n}}^{l_{2} l_{2} \cdots l_{n}} \frac{\partial x^{\beta_{1}}}{\partial y^{s_{1}}} \cdots \frac{\partial x^{\beta_{n}}}{\partial y^{s_{n}}}$

[^1]respectively. Each of these factors is a determinant of order n (see (3.4), paper (A)) and since an inversion of any two of the labels $\left(l_{1}, l_{2}, \cdots, l_{n}\right)$ merely changes the sign of both factors we may write
\[

$$
\begin{aligned}
& \varepsilon_{s_{1} s_{2} \cdots s_{n}}^{r_{1} r_{2} \ldots r_{n}} \\
& \quad==\delta_{12}^{\alpha_{1} \alpha_{2} \ldots \alpha_{n}} \frac{\partial y^{r_{1}}}{\partial x^{\alpha_{1}}} \cdots \frac{\partial y^{r_{n}}}{\partial x^{\alpha_{n}}} \cdot \delta_{\beta_{1} \beta_{2} \ldots \beta_{n}}^{12} \cdots n \\
& \frac{\partial x^{\beta_{1}}}{\partial y^{s_{1}}} \cdots \frac{\partial x^{\beta_{n}}}{\partial y^{s_{n}}} .
\end{aligned}
$$
\]

The product of the two determinants on the right is a determinant of which the element in the p th row and the q th column is

$$
\begin{equation*}
\frac{\partial y^{r_{p}}}{\partial x^{\sigma}} \cdot \frac{\partial x^{\sigma}}{\partial y^{s_{q}}} \quad \text { or } \quad \delta_{s_{q}}^{r_{r}} \cdot \tag{3}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& \varepsilon_{s_{1} s_{2}}^{r_{2}, r_{2} \cdots r_{n}}=\boldsymbol{d}_{s_{1} s_{2}}^{r_{1}, r_{2}} \cdots r_{n} \\
& \hline
\end{aligned}
$$

which proves the theorem stated.
The tensor character of the symbols for the cases $m<n$ follows at once by contraction of the tensor $\delta_{s_{1} s_{2} \ldots s_{n}}^{r_{1} r_{2} \ldots r_{n}}$. Thus it is immediately apparent that
for in the summation on the right all the terms vanish unless $\left(r_{1}, r_{2}, \cdots, r_{n-1}\right)$ are all different and $\left(s_{1}, s_{2}, \cdots, s_{n-1}\right)$ all different and also α different from any of the $\left(r_{1}, r_{2}, \cdots, r_{n-1}\right)$ and the $\left(s_{1}, s_{2}, \cdots, s_{n-1}\right)$. The only term which has a value different from zero occurs, therefore, when $\left(r_{1}, r_{2}, \cdots, r_{n-1}\right)$ and $\left(s_{1}, s_{2}, \cdots, s_{n-1}\right)$ are arrangements of the same group of $n-1$ out of the n numbers $(1,2, \cdots, n)$ and α is the remaining number. The equation (4) shows that $\delta_{s_{1} s_{2} \cdots s_{n-1}}^{r_{1} r_{2} \cdots r_{n-1}}$ is an arithmetic mixed tensor contravariant of rank $n-1$ and covariant of rank $n-1$. Procecding similarly we arrive at the simple Kronecker symbol $\delta_{s}^{r}=\delta_{s \alpha_{1} \alpha_{2} \cdots \alpha_{n-1}}^{r \alpha_{1} \alpha_{2} \cdots \alpha_{n-1}}$ which is an arithmetic mixed tensor of the second rank.

It may not be superfluous to call attention again to the fact that these tensors are non-metric. The space for which
they are defined is the general space of analysis situs, or topology, in which a point is merely a set of n ordered numbers. The usual presentation of, and notation for, the mixed tensor δ_{s}^{r} is therefore unfortunate. This starts with a symmetric covariant tensor $g_{r s}$ of the second rank which furnishes the metric ground form $(d s)^{2}=g_{\alpha \beta} d x^{\alpha} d x^{\beta}$ of a Riemann space. From this is derived a contravariant presentation $g^{r s}$ of the metric tensor and the inner product $g_{s}^{r}=g^{r \alpha} g_{\alpha s}$ furnishes the mixed arithmetic tensor which we have denoted by δ_{s}^{r}.
2. The Outer Multiplication of Tensors. If we have two covariant tensors $a_{r_{1} r_{2}} \ldots r_{p}$ and $b_{s_{1} s_{2}} \ldots s_{q}$ of ranks p and q respectively we may derive from them, by means of the generalized Kronecker tensor, an alternating covariant tensor of rank $p+q$ as follows:

$$
\begin{equation*}
c_{r_{1} r_{2} \ldots r_{p} s_{1} \ldots s_{q}}=\delta_{r_{1} \ldots r_{p} s_{1} \ldots s_{q}}^{\alpha_{1} \ldots \boldsymbol{\alpha}_{p} \beta_{1} \ldots \beta_{q}} a_{\alpha_{1} \ldots \alpha_{p}} b_{\boldsymbol{\beta}_{1} \ldots \beta_{q}} \tag{5}
\end{equation*}
$$

$p+q$ must be $\leqq n$ in order that the alternating tensor thus arrived at may not vanish identically.

Similarly we derive from two contravariant tensors $a^{r_{1} \cdots r_{p}}$ and $b^{s_{1} \cdots s_{q}}$ of ranks p and q respectively an alternating contravariant tensor of rank $p+q$

$$
\begin{equation*}
c^{r_{1} \cdots r_{p} s_{1} \cdots s_{q}}=\delta_{\alpha_{1} \ldots \alpha_{p} \beta_{1} \ldots \beta_{q}}^{r_{1} \cdots r_{p} s_{1} \cdots s_{q}} a^{\alpha_{1} \ldots \alpha_{p}} b^{\beta_{1} \cdots \beta_{q}} . \tag{6}
\end{equation*}
$$

If the original tensors are alternating considerable simplification results. It is convenient to remove a numerical factor $p!q$! and we may define the derived tensor $c_{r_{1} \ldots r_{p} s_{1} \ldots s_{q}}$ by the equations

$$
\begin{align*}
c_{r_{1} \cdots r_{p} s_{1} \cdots s_{q}} & =\frac{1}{p!} \frac{1}{q!} \delta_{r_{1} \cdots r_{p} s_{1} \cdots s_{q}}^{\alpha_{1} \ldots \alpha_{q} \beta_{1} \ldots \beta_{q}} a_{\boldsymbol{\alpha}_{1} \ldots \alpha_{p}} b_{\beta_{1} \ldots \beta_{q}}, \tag{7}\\
& =\sum_{l, m} \delta_{r_{1} \cdots r_{p} s_{1} \cdots s_{q}}^{l_{1} \cdots m_{1} m_{1} \cdots m_{q}} a_{l_{1} \ldots l_{p}} b_{m_{1} \cdots m_{q}}
\end{align*}
$$

In the last expression $\left(l_{1}, l_{2}, \cdots, l_{p}\right)$ is any group of p out of the $p+q$ numbers $\left(r_{1}, \cdots, r_{p}, s_{1}, \cdots, s_{q}\right)$ and $\left(m_{1}, \cdots, m_{q}\right)$
is the remaining group of q numbers. No group $\left(l_{1}, \cdots, l_{p}\right)$ is to be repeated in the summation. The tensor derived in this way may be called the outer product of the two alternating covariant tensors. Similarly the outer product of two alternating contravariant tensors is given by

$$
\begin{align*}
& c^{r_{1} \ldots r_{p} s_{1} \ldots s_{q}}=\frac{1}{p!} \frac{1}{q!} \delta_{\alpha_{1} \ldots \alpha_{p} \beta_{1} \ldots \beta_{q}}^{r_{1} \ldots v_{p} s_{1} \ldots s_{q}} a^{\alpha_{1} \ldots \alpha_{p}} b^{\beta_{1} \ldots \beta_{p}} \tag{8}\\
& =\sum_{l, m} \delta_{l_{1} \cdots l_{p} m_{1} \cdots m_{q} m_{1} s_{1} \cdots m_{q}}^{r_{1}} a^{l_{1} \cdots l_{p}} b^{m_{1} \cdots m_{q}} .
\end{align*}
$$

The alternating tensor derived as in (5) from two nonalternating tensors is not essentially different from the outer product of two alternating tensors. For we may write it, on using the result*

$$
\delta_{r_{1} \cdots r_{p} s_{1} \cdots s_{q}}^{l_{2} \cdots l_{p} m_{1} \cdots m_{q}}=\frac{1}{p!} \frac{1}{q!} \delta_{\lambda_{1} \ldots \lambda_{p}}^{l_{1} \cdots h_{p}^{p}} \delta_{\mu_{1} \cdots \mu_{q}}^{m_{1} \cdots m_{q}} \delta_{r_{1} \ldots r_{p}}^{\lambda_{1} \ldots \lambda_{p}} \delta_{s_{1} \cdots s_{q}}^{\mu_{1} \cdots \mu_{q}}
$$

in the form

$$
\frac{1}{p!} \frac{1}{q!} \delta_{r_{1} \ldots r_{p} s_{1} \ldots s_{q}}^{\lambda_{1} \ldots \lambda_{p} \mu_{1} \ldots \mu_{q}}\left(\delta_{\lambda_{1} \ldots \lambda_{q}}^{\alpha_{1} \ldots \alpha_{p}} a_{\alpha_{1} \ldots \alpha_{p}}\right)\left(\delta_{\mu_{1} \ldots \mu_{q}}^{\beta_{1} \ldots \beta_{q}} b_{\beta_{1} \ldots \beta_{q}}\right)
$$

showing that $c_{r_{1}} \ldots r_{p} s_{1} \ldots s_{q}$, as defined in (5), is really the outer product of the two alternating tensors

$$
f_{t_{1} \ldots t_{p}}=\delta_{t_{1} \ldots t_{p}}^{\alpha_{1} \ldots \alpha_{p}^{\prime}} a_{\alpha_{1} \ldots \alpha_{p}}
$$

and

$$
g_{u_{1} \ldots u_{q}}=\delta_{u_{1} \ldots u_{q}}^{\beta_{1} \ldots \beta_{q}} b_{\beta_{1} \ldots \beta_{q}} .
$$

It is well known that alternating covariant tensors may be used as the coefficients of invariant integral forms. In fact, we may, from p arbitrary contravariant tensors $a^{r}, b^{s}, \cdots, g^{t}$, of rank one, form the alternating contravariant tensor of rank p

$$
e^{r_{1} \cdots r_{p}}=\delta_{\alpha_{1} \cdots \alpha_{p}}^{r_{1} \cdots r_{p} p_{p}} a^{\alpha_{1}} b^{\alpha_{2}} \cdots g^{\alpha_{p}} .
$$

When $\left(a^{r}, b^{s}, \cdots, g^{t}\right)$ are differential vectors tangent to the parametric lines of a spread of p dimensions so that

[^2]$$
a^{r}=\frac{\partial x^{r}}{\partial u_{1}} d u_{1}
$$
etc., the scalar product $a_{\rho_{1} \ldots \rho_{p}} e^{\rho_{1} \cdots \rho_{p}}$ is called an integral form of order p (in this case $e^{r_{1} \cdots r_{p}}$ is usually denoted by $\left.d\left(x^{r_{1}} x^{r_{2}} \cdots x^{r_{p}}\right)\right)$. Its integral over the spread is called the integral of the alternating covariant tensor $a_{r_{1}} \ldots r_{p}$ over the spread of p dimensions. In this connection the result (7), which enables us to derive from two integral forms of orders p and q respectively an integral form of order $p+q$, is known as the law of the outer product of two integral forms.*
3. Connection between the Kronecker Tensor and Reciprocation with respect to a Quadratic Differential Form. If we have any symmetric covariant tensor of the second rank $a_{r s}$ we may denote by a the value of the determinant which has $a_{r s}$ as the element in its r th row and s th column. It follows at once that the product $\sqrt{a} d\left(x^{1} x^{2} \cdots x^{n}\right)$ is invariant, and so we may introduce an alternating covariant tensor $\varepsilon_{r_{1}} \ldots r_{n}$ which is defined by the statement that its components have the value $\pm \sqrt{a}$ according as the arrangement $\left(r_{1}, r_{2}, \cdots, r_{n}\right)$ of the n numbers $(1,2, \cdots, n)$ is of the even or odd class. For the integral form
$$
\varepsilon_{\alpha_{1}} \cdots \alpha_{n} d\left(x^{\omega_{1}} x^{\alpha_{2}} \cdots x^{\alpha_{n}}\right)
$$
is invariant, its value being $n!\sqrt{ } a d\left(x^{1} x^{2} \cdots x^{n}\right)$. From this alternating covariant tensor we derive an alternating contravariant tensor of rank n as follows. Solving the system of n^{2} equations
$$
a_{r \alpha} a^{\kappa s}=\delta_{r}^{s}
$$
for the n^{2} unknowns $a^{r s}$, we obtain a contravariant tensor of rank two which is said to be the reciprocal of $a_{r s}$ with respect to the quadratic differential form $a_{c \beta} d x^{\alpha} d x^{\beta}$. The tensor $\varepsilon^{r_{1} \cdots r_{n}}=a^{r_{1} \alpha_{1}} a^{r_{2} \alpha_{2}} \cdots a^{r_{n} \alpha_{n}} \varepsilon_{\alpha_{1}} \cdots \alpha_{n}$ is said to be the

[^3]reciprocal of $\varepsilon_{r_{1} \ldots r_{n}}$ with respect to the quadratic differential form. It is alternating and has the value $\pm 1 / \sqrt{a}$ according as the arrangement $\left(r_{1}, \cdots, r_{n}\right)$ of the n numbers $(1,2, \cdots, n)$ is of the even or odd class. Then the simple product $\varepsilon^{\gamma_{1} \cdots r_{n} \varepsilon_{s_{1}} \cdots s_{n}}$ is the generalised Kronecker tensor
$$
\delta_{s_{1} \cdots s_{n}}^{r_{1}} .
$$

It may be remarked that the operation of finding tensors reciprocal to any quadratic differential form is a possible one so long as the differential form is non-singular ($a \neq 0$). When the quadratic differential form is the metrical ground form $(d s)^{2}=g_{\alpha \beta} d x^{\alpha} d x \beta$ of a Riemann space we may say that the reciprocal covariant and contravariant tensors are but different representations of the same physical idea which is the tensor. This is by analogy with the case of rectangular cartesian coordinates in euclidean space where the distinction between covariance and contravariance breaks down and the components of two tensors which are reciprocal with respect to the metric ground form $(d s)^{2}=\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\cdots+\left(d x^{n}\right)^{2}$ coincide.

We have endeavored to show in the preceding paragraphs the utility of the alternating tensor $\delta_{s_{1}}^{r_{1} \ldots r_{m}}$ in proving theorems of tensor algebra. It will be readily recognised that there is an intimate connection here with (rassmann's Ausdehnungslehre, and we believe, in fact, that a systematic exposition of this theory with the aid of the generalized Kronecker symbol would help to make it more widely understood. The use of the symbol in connection with the discussion of the orientation of cells in analysis situs* is also recommended.

[^4][^5]
[^0]: * Presented to the Society (under a different title), March 1, 1924.
 \dagger The Generalized Kronecker symbol and its application to the theory of determinants, American Mathematical Monthly vol. 32 (1925), p. 233. This paper will be denoted by the symbol (A) in references below.
 \ddagger Cf. P. Frankiin, Philosophical Magazine, (6), vol. 45 (1923), p. 998.

[^1]: * See paper (A), equation $(2 \cdot 3)$.

[^2]: * See equation (2.4bis), paper (A).

[^3]: * Reference may be made to E. Cartan, Leçons sur les Invariants Intégraux, Paris, 1922. E. Cartan, Annales de l'Ecole Normale, 1899. H. Bateman, Differential Equations, Chapter 7. London, 1918. H. Bateman, Proceedings of the London Society, (2), vol. 8 (1910).

[^4]: Johns Hopkins University

[^5]: * 0. Veblen. Cambridge Colloquium Lectures, New York, 1922.

