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RESOLVENT SEXTICS OF QUINTIC EQUATIONS 
BY L. E. DICKSON 

1. Introduction. The object of this paper is to give 
simple derivations of the classic resolvents which have 
been obtained heretofore by elaborate computations. 

Jacobi* established the form of a remarkable resolvent, 
but neither found the values of the coefficients nor gave the 
simple details (§ 2 below) which lead directly to that form. 

Cayleyt was not aware of Jacobi's work when he fully 
computed the same resolvent. Noting that its roots are 
functions of the differences of the roots xi of the quintic, 
he first computed at length the resolvent sextic under the 
restriction that xb — 0. Then the coefficients were "com­
pleted by the introduction of the terms involving the con­
stant coefficient of the quinto.'' No details were given 
of the latter long computation, which may perhaps be best 
made by utilizing the fact that the coefficients are semin-
variants. The simple new method employed here (§ 3) makes 
initial use of the latter fact as well as of a lemma which 
reduces the search for the needed seminvariants of the 
quintic to a mere inspection of the invariants of a quartic. 

From the Jacobi-Cayley resolvent (which is a simple 
transform of the old Malfatti resolvent) it is an immediate 
step (§ 5) to the noteworthy covariant resolvent discovered 
by Perrin?î and independently by McClintock,§ each time 
as the final step of a long computation. 

* JOURNAL FÜR MATHEMATIK, vol. 13 (1835), pp. 340-52; WERKE, 

vol. 3, 1884, pp. 269-84. 
t PHILOSOPHICAL TRANSACTIONS, London, vol. 151 (1861), pp. 263-76 ; 

COLLECTED MATHEMATICAL PAPERS, vol. 4, pp. 309-24. 

| COMPTES RENDUS DU DEUXIÈME CONGRÈS INTERNATIONAL DES 

MATHÉMATICIENS, Paris, 1902, pp. 199-223. Announced in BULLETIN 
DE LA SOCIÉTÉ DE FRANCE, vol. 11 (1882-83), pp. 64-65. 

§ AMERICAN JOURNAL, vol. 8 (1886), pp. 45-84; vol. 20 (1898), 
pp. 157-192. 
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2. The Symmetric Functions of zi7 • • •, z6. Writing ij 
for XiXj, we consider the function 

12345 = 12 + 23 + 34 + 45 + 51. 

It is unaltered by the substitutions a = (12345), b = (25)(34). 
Since Jr^db = ar1, a and b generate a group of ten even 
substitutions. Since 12345 is therefore unaltered by these 
ten, it takes at most 60/10 distinct values under the group 
G of all 60 even substitutions. It actually takes the six 
distinct values given by the first (positive) parts of 

z± = 12345—13524, z2 = 12453 — 14325, 
zs = 12534—15423, s4 = 15243 — 12354, 
z6 = 14235 — 12543, z6 = 13254—12435. 

In fact, (345), (354), (253), (243), (23)(45) replace z± byz2, •. • ,*e. 
Hence zx, • • •, zQ are merely permuted by each of the 60 
even substitutions. Next, every odd substitution 0 replaces 
each Zi by the negative of some z. For, (2354) replaces 
#i by —z±. Let E be one of the even substitutions which 
replaces z% by zx and write Et for the even substitution 
(2354)-1£-1. Then O = £(2354)^ replaces zi by the func­
tion by which E± replaces —z± and that function is the 
negative of some z. 

Hence any homogeneous symmetric function of z±, • • •, zQ 

of even degree is symmetric in xx, • • •, x6. But if it is of 
odd degree in the 2?s, it merely changes sign when any 
two œ's are interchanged and hence is divisible by the 
product of the ten differences of the a?'s, the quotient being 
symmetric in the #'s. 

3. The Jacobi-Cayley Resolvent The discriminant A of 

f(x,y) = a0x
bJr ha^y-^lOa^y^-^-lOa^x^-^-ba^xy^-^a^ 

is defined to be the polynomial such that br°a~8A is equal 
to the product of the squares of the ten differences of the 
roots Xi of ƒ (a?, 1) = 0. 

In the sextic having the roots z1} • • -, zQ, the coefficients 
of z5 and zs are zero by § 2, being of odd degrees 1 and 3 
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in the #'s, so that their degrees in the #'s are less than 
the degree 10 of the product II of the differences of the #'s. 
The coefficient of z is the product of a numerical constant 
by TI or by a~4V~J. It is convenient to multiply the 
sextic by a%. We get 

a6
0z

6-\- afa^4-{-a2
0u2z

2-{-us = vd\V Az, 

where v is a numerical constant, while a^2iui is the sum 
of the products of the s's taken 2i at a time and hence is of 
total degree 4i in the #'s and of degree 2i in any one root x. 
By § 2, it is symmetric in the x's. It is expressible as 
a polynomial in the differences of the xJs, since 

*i = (1 — 5) (2—5)+ (2—5) (3—5)+ (3—5) (4—5) 
— (2—5) (4—5) — (4—5)(1—5) — (1 — 5) (3—5). 

It follows* that m is a seminvariant of ƒ of degree 2i 
and weight 4i. By a seminvariant 8 of ƒ is meant a 
homogeneous isobaric polynomial in a0j •••> a5 for which 
J2#==0, i. e., is annihilated by the operator 

oai da2 oas da± da6 

Since ux is of degree 2 and weight 4, it lacks a5 and 
is the product of J by a numerical constant, as shown by 
the following lemma. 

LEMMA. If a seminvariant 8 of the quintic fix, y) 
lacks a5, it is a seminvariant of the quartic 

q = a0x
éJ

r4:aix
sîf-{-6a2X2y2-]r4casxySJ\- a±y^. 

If the iveight of S is double its degree, it is an invariant 
of q and hence is a polynomial in 

I = a0a4—4^3+3^, 
J — a0a2a4 — aQa\ + 2 a±a2as — a2a4— a\. 

For, S is homogeneous and isobaric and is annihilated 
by the operator derived from Jl by suppressing the final 

* Dickson, Algebraic Invariants, New York, 1914, p. 53. 
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derivative. Hence S is a seminvariant of q. A semin-
variant of degree d and weight tu of a binary form of 
order p is the leader of a unique covariant of order pd—2w 
(Invariants, p. 43 and Ex. 1, p. 40). It is therefore an 
invariant if p — 4, iv = 2d. 

A known seminvariant of the same degree 4 and weight 8 
as tt2 is 

T = a\a%ab—Sa^a^ — ba^a^a^ 10a0a\a±—4a0a2tf| 

+ 2 a\ab — 5 a\a2aA + 1 4 a\a\ —16 a1a|a8 + 6 a\ 

(it suffices to verify that J2T-r=0). We delete the term 
aga8a6 from M2 by subtracting a multiple of T. In the 
resulting seminvariant v, the only terms involving a5 are 
those in ^ ^ a ^ + ^ p , since the terms in parenthesis, 
together with the deleted term aj*a8, are the only possible 
terms of degree 3 and weight 3. By inspection, Slv is 
the sum of 

a a2
0a2a5 + (2 a + 3/9) a0a^6 

and terms free of a5. Hence a = /? = 0. Thus v lacks a5 

and by the Lemma is an invariant of q and hence is a 
product of I2 by a constant. Thus %i% is a linear com­
bination of I2 and T. 

To determine t% we shall employ the seminvariant P of 
the same degree 6 and same weight 12 (cf. § 6): 

P = a\a2a\—2aga8a4a6 + $oa4 ~~~ Via5—4a0a1a2<x4a5 

+ Sa^a^—2a0a1a8a|—2a0aja8a6+ 14a0a*af 
—22a0a2a|a4 + 9a0al + 6aja4a5—\2a\a2azab—lba\a2a\ 
+ 10a^a|a4 + ôa^l^ + 30^^^^—20a1a2a^ 
— 15^a 4 +10a 2 ^ . 

We use a0P and TI to delete the terms a\a2a\ and ^a8a4a5 

from w3. In the resulting semmvariant 8, the terms having 
the factor a6 are those in 

cc a\a\a\ + fi afa^a^ + y afa^a^ -f a ^a|a8a5 

+ b a0a[a4a6 -\- ca0ala2asa6 + da0a±ala5 + ea|a8a5+# a\a\ah. 
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These terms alone furnish the part of S2S involving a6: 

2a afa^l + fiala2aéarô + Y ̂ \% + (36 + 2 fi + 1 Oct) a2a2a4a5 

+ (2c -j~ 4a + 4/# + 6/) a\a^ a2aza6 + W + 3a) ö^ajja. 
+ (2c + 46 + 4é)a0alasarô + (3c + 3g + 6d) a0a^|a5 

+ (fy + 3e)a*a2a6. 

The conditions that this be zero identically require that 
a, fi, y, a, b, c, d, e, g shall all vanish. Since 8 therefore 
lacks a6, the lemma shows that it is a sum of terms IrJs 

whose degree is 2r + 3s = 6, whence either s = 0, r = 3 
or s = 2, r = 0. Thus u3 is a linear combination of 
Is, J2, a0P, TI. Hence the sextic is of the form 

ags» + a%*lé + alifiP + Y T)z2 + dP + f J* + x%P+^TI 

= alvVte, 
where the Greek letters are numerical constants. To find 
their values, we employ the special quintic having x$ = —a?i, 
X$. •—— #? 2 j "^5 "—" ^ • 

#(#2—^)(^2—xl) = 3?5 + 10a2#
8 + 5a4# = 0, 

where 10«2 = —x\— .T2,, 5a4 = x\x\. Then 

^1 = z : ^3 = = : = ( ^ 1 i ^ 2 / > ^2 = = ^4 = = \X1 X2) > 

^ -• rp£> sytJ-i LL.'Y' /Yl V ~ rf>— /V»-J ÜL'Y' /V 

Using temporarily the abbreviations 
o • / y » " _ _ l _ / y - 1 /v-) tzirrr: SY"ZSY>-J f — /y» /y> 

we see that zt and #2 are the roots of z2—4fe + 4p—s2 = 0, 
while £6 and £6 are the roots of z2JrStz-jr20p—s2 = 0. 
Hence the sextic is 

zV)—{20p+3s2)zé+(2A0p2—Sps2+3sà)z2+^p—s2)2(20p—s2) 
= 128tp(4p—s2)z. 

Replacing s,p, t by their values in terms of a2? a*, we get 

z^—100(a4 + 3al)zi + 2000(3al—2a4al+löaf) 
+ 40000(aJ—lla|a| + 35a4a*—25a«) 
= 128Ö0«4(a4—öa^Vö^g'. 



520 L. E. DICKSON [Nov.-Dec, 

But for a0 = 1? ax — a3 = a6 = 0, we have 

-?" = aA-\-3a\, J = a2aé—a\, T = 10a|a4 + 6a|? 

A = 162aJ(a4—5a*)2, ^ + 14a|a | — 15a|a4. 

—4000, We see at once that « = —100, /? = 6000, y = 

v = 800l/~5. By the terms free of z, 

d + X = 40000, 90 + e + lU+lOfi = —11*40000, 

21â—2e—lb?. + 36f* = 35-40000, 

27^ + ^+18/^ = —25-40000. 

Hence I = 40000, € = — 252, p = d = 0. The resolvent 
sextic is therefore 

ags6— lOOaJJ*4 + 2000a2
0(3I2~2T)z2—800V 5 a*VÂz 

+ 40000(a0P— 2b J2) = 0. 

4. Canonizant C. The covariant of ƒ , 

C = Jx^-^JxX^y + Jzxy^ + Jny*, 

having the leader J, may readily be found by means of the 
annihilator (Invariants, p. 39) 

0 oax da0 
-4=a* 

9a4 
• 3a* 

da2 
•2 a^-

das 
a 

We get 

O J = J i 

407 , = 

Hence 

Js 

<̂ 0 

% 

a2 

a4 
a2 
as 

ax 
a2 

<h 

a2 

a§ 

a4 

Ch 

a± 

a6 

a* 
a± 

ah 

\OJi. = J, 

J 

Oo 

at 

a2 

a0 

at 

a2 

a2 

«8 

a4 

ai 

<x2 
«8 

«3 

«4 

«5 

«2 

a3 
a4 

a0a? + Ö̂ I2/ #i# + a2y a2x + $3?/ ! 
C = | ai# + a2y a2x -f- $3 /̂ fls^ + a±y 

a2x + a3 /̂ a*x + a4y a ^ + a&V I 

The name canonizant is given to C since its three linear 
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factors u, v, iv have the property * that ƒ = a6 + v6 + iv5. 
For a direct derivation of C, see § 6. An elementary 
verification that C is a covariant may be made by mani­
pulating a single determinant. Under the transformation 
x=X+eY, y = Y, ƒ becomes F=A0X

5-}-öAlX
éY+>-•, 

where t 

A 
A, 
A, 
As 

A, 
A, 

— $0 ? 

= (h+coo, 
= a^-\-2a1€-\-a0€

2
J 

= asJr3a2s
JrSa1€

2-\-aoes
J 

= a4 + 4a3^ + 6a2é2+4aif3 + ao^4
? 

== a5 + àaée + 10ör8e
2 + 10a2£

8 + öa^* + a0*
5. 

To the elements of the second row of C add the products 
of those of the first row by e. To the elements of the third 
row add the products of those of the first row by e2 and 
those of the original second row by 2*. Replace x and y 
by their values. To the new determinant apply the corres­
ponding operations on columns instead of rows. We get 
a determinant of type C written in capital letters. Finally, 
the interchange of x with y and hence of a0 with a5, a± 
with a4, a2 with a3? replaces C by a determinant which 
reduces to C by writing its rows in reverse order and then 
the columns in reverse order. 

5. Covariant Resolvent We employ the linear covariant 
L = Px+Qy, where P was defined in § 3 and Q is derived 
from P b y the substitution (a0a5) (a^) (a2as) induced by the 
interchange of x and y. The constant term 40000 (a0P—25J2) 
of the resolvent in § 3 is therefore the leader of the co-
variant K = 40000 (/L—26C2) of order 6. Equated to 
zero, it gives the covariant resolvent of Perrin, which was 
rediscovered by McClintock and called the central resolvent. 

* Salmon, Modern Higher Algebra, 4th éd., p. 153; German trans­
lation by Fiedler, p. 199. 

t We may write symbolically a* for at, ƒ = {x-\-axyY. Then 
J P = (X+/SY)5, p — m + e. After expansion, the terms free of ax 

are to be multiplied by a0. From p1 we get Ai. 
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For its use as a resolvent of the quintic ƒ(#, 1) = 0, 
it is essential to know the expressions for its roots in terms 
of xx, • • •, x6. To find these expressions, we shall give a 
process indicated without proof by McClintock, but requiring 
correction by inserting factors a0. Write 

where (and below) each of the five terms of 2 a r e derived 
from the preceding term by the substitution (12345). 
Replacing each x% by its reciprocal, we get 

cto2—" "—~^ — ~^u *&! — a0^j(xs—a?a)#4#5. 
XiX^X^X^Xfr &§ 

Similarly, from ll\ we get —O1a0la^ We shall prove that 

G = ll(OiX—Viy) 

is a covariant of ƒ, where (t>i — a^Zi, and Wi is derived 
from Q>i by replacing each root x by its reciprocal. Since 
the leader of G is 0± • •. #>6, which is equal to the constant 
term of the resolvent in § 3, and hence to the leader of K} 

it will follow that G = K. 
Apply transformation x = Y, y = Xtof— a0H(x—x^y). 

We get F = a^HiX—x^Y). The function 0X for F is 

" -ï^-i—^-i^i — a6 I a° 

The function W± for F is the product of a&/a0 by the 
function —O1a0ja^ obtained above from Wt by replacing 
each Xi by its reciprocal. Hence G for F is 

I K - ^ J + ^ J ) = IliVix-Wiy) = G-
Next, apply transformation x = X+tY, y = Y to ƒ. 

We get F= aolliX—XxY), where X1=xi — t. The 
function &i for F is the seminvariant 0± itself. The 
function ^ for F̂ is 

Hence G for J?7 is 
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U^iX-M.Y) = Ill01x-(t01 + M1)y] = G. 

Thus the covariant resolvent K(x, 1) = 0 has the roots Wi!<Di. 
A like process enables us to write down at once the 

linear factors of a covariant of order n whose leader is 
a seminvariant which is the product of n rational functions 
of the #'s. 

6. Another Derivation of C and L. If in a covariant <p 
of ƒ we replace xrys by (—l)sdr+s/(dyrdxs), i. e. replace 
the products of powers of x and y by symbolic products 
of powers of djdy and —d/dx, and apply the resulting 
operator to another covariant ip of ƒ, we obtain a covariant 
[<P, ip] of ƒ (Invariants, top p. 61). 

The quintic ƒ has the covariant* 

i = Ix*-\-Iixy-\-I*y*, I± = 01= a0a5—3a1a4t-\-2a2as, 
I2 = %OIi= a^a*,—4a2a4+3tf3. 

Then 
— hihf] = C, — ±[i, C] = L = Px + Qy. 

THE UNIVEKSITY OF CHICAGO 

* It is the invariant I of the fourth polar of ƒ. 
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