$$
\Pi\left(\boldsymbol{\Phi}_{1} X-M_{1} Y\right)=\Pi\left[\left[\boldsymbol{\Phi}_{1} x-\left(t \boldsymbol{\Phi}_{1}+M_{1}\right) y\right]=G\right.
$$

Thus the covariant resolvent $K(x, 1)=0$ has the roots Ψ_{i} / Φ_{i}.
A like process enables us to write down at once the linear factors of a covariant of order n whose leader is a seminvariant which is the product of n rational functions of the x 's.
6. Another Derivation of C and L. If in a covariant φ of f we replace $x^{r} y^{s}$ by $(-1)^{s} \partial^{r+s} /\left(\partial y^{r} \partial x^{s}\right)$, i. e. replace the products of powers of x and y by symbolic products of powers of $\partial / \partial y$ and - $\partial / \partial x$, and apply the resulting operator to another covariant ψ of f, we obtain a covariant $[\varphi, \psi]$ of f (Invariants, top p. 61).

The quintic f has the covariant*

$$
i=I x^{2}+I_{1} x y+I_{2} y^{2}, \quad I_{1}=O I=a_{0} a_{5}-3 a_{1} a_{4}+2 a_{2} a_{3}, ~\left(I_{2}=\frac{1}{2} O I_{1}=a_{1} a_{5}-4 a_{2} a_{4}+3 a_{3}^{2} .\right.
$$

Then

$$
-{ }_{0}^{1}[i, f]=C, \quad-\frac{1}{2}[i, C]=L=P x+Q y
$$

The University of Chicago

* It is the invariant I of the fourth polar of f.

AN ACKNOWLEDGEMEN'T

BY J. H. M. WEDDERBURN
Professor G. Scorza has kindly called my attention to the fact that the result of my note entitled A theorem on simple algebras (this Bulletin, vol. 31, pp. 11-13) was given by him in his book, Corpi Numerici e Algebre (1921), pp. 346-352. I regret that I was unaware of this at the time the paper was published, and I take this means of acknowledging Professor Scorza's priority.

