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ON T H E SOLUTION OF HIGHER DEGREE 
ALGEBRAIC EQUATIONS* 

BY GLENN JAMES 

1. Introduction. In this paper, we first solve for a real root 
of the general algebraic equation with real coefficients and 
negative constant term. This root appears as the limit of a 
function defined by a certain recursion formula. Ordinary ra­
dicals are special forms of it. By means of this result and the 
notation of repeated resolvent equations, we then outline a 
theoretically possible method of obtaining formulas for all 
the roots of any equation. 

2. The Least Positive Real Root. Consider the equation 

(1) xn+aixn-1+a2x
n~2+ • • • + a n « 0 , 

where the coefficients are real and an < 0. At least one root of 
this equation lies between 0 and k where 

*>|ai|+Vl^+Vï^f+ • • • +W\"KT, 

and no root as large as k."f In order to simplify our work and 
our results, we subtract k from the roots of (1) then make use 
of the interval —k to 0. The new equation is 

(2) (x+k)n+a1(x+k)n-1+ • • • + a n = 0 . 

We now denote the left member of this equation by f(x) and 
make use of the interpolation formula 

xp jf(0) 

xp-i f{0)—f{xp-i) 

* Presented to the Society, San Francisco Section, April 4, 1925. 
t J. L. Walsh, (ANNALS OF MATHEMATICS, (2), vol. 25, No. 3, p. 285) 

proves that in the complex plane the roots all lie within or on a circle about 
the origin having this expression for a radius. This can be proved for 
real values by direct substitution. 
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This takes the form* 

J*̂ __ - [kn+aikn-1+ - • • +0n] 

XP-! " Xp.i[(Xp-i+k)^l+<f>i(k)(Xp-1 + k)n-2+ • • • +#*-!(*)] ' 

where 

(5) <t>2(k) = ki+a1k
i-l+ • • • + 0 2 . 

Hence 

(6) xp= —<l>n(k)/On-i(xp-i+k) , 

where 

+ • • ' +<l>n-l(k) . 

Now if the second member of (3) approaches unity as xp 

approaches some limit, say r, then r is a root of (2), for then 
limXpi_+r f(xp-i) = 0. It will suffice to show that xp is always 
negative, never decreases and does not approach zero. 

The second member of (6) is negative whenever # p - i è — &> 
for the binomials in the denominator are then positive, the 
numerator is positive by virtue of our choice of k, and the 
coefficients, c/>i(k), are positive, since k is of the form | a i | 
+ V | a 2 | + • • • + V | a i | + c , where c>0. Comparing (6) 
and the same relation between xp+i and xp it is easily seen that 
Xp+i*£Xpt provided tfp^tfp-i^ — k. In the case p = 2, the 
latter inequality holds. For we have Xi = —k, whence 

X2=—<t>n(k)/<t>n-i(k), 

and the inequality 

— #n(&)/0n-l(£)e — k , 

reduces to a w ^ 0 . From (6) it can be seen that xp cannot 
approach zero for it cannot exceed —<j>n{k)/dn-i(k) since xp-i 
cannot be positive, and the numerator of this fraction cannot 

* The denominator is most easily thrown into this form by the follow­
ing device. Replace xp-i by y—k and call the result F(y). Then put F(y) 
in the form (y — k)Q(y) + F(k). Now replace y by xp-i+k and note that 
F(xp^+k)^f(xP^) and F(k) =/(0). 



164 GLENN JAMES [Mar.-Apr., 

be zero since k is greater than the upper limit of the roots of (1). 
Using (6) as a recursion formula, we can now set up the func­
tion which is a root of (2). Substituting the above value of x2 

in the second member of (6), we obtain 

#3 = ~ <f>n{k)/en-l [k — <t>n{k)/<t>n~l(k) ] \ 

similarly 

# 4 = — <l>n(k)/dn^l[k — (l)n(k)/dn-l(k--<t>n(k)/<l)n--l(k))] . 

The limit of this process can well be written in the form 

• • • - 0 n ( * ) / ^ l [ * - 0 n ( * ) / ^ l ( * - * n ( * ) / « » - l ( * ) ) ] ' 

We shall denote this by I[au • • • , an, k]. 
One root of equation (1) is then I[ah a2, • • • , an, k]+k. 

Obviously this is the least real, positive, root of that equation. 
Moreover, since by changing the sign of the roots we can 
make the constant term negative in an equation of odd 
degree, one real root of any equation except those in which 
the constant term is positive and the degree even takes the 
form 

^[l{Al , • • - , i 4 » , f e ) + * ] * , 
\dn I 

where 

Ai=\-—- a*. 
L \an\ J 

3. The Roots of Any Equation. Suppose that, in equation (1), 
n takes the form 2lm where m is odd. Then the degree of 
the resolvent equation of (1), being nC2, takes the form 2'~1ra' 
where m' is odd. Now forming the resolvent of the first resol­
vent, then the resolvent of the second, etc., we finally arrive at 
the / th resolvent which is of odd degree. Having solved this 

* It is of interest to note that, when a i = a 2 = • • • =an_i=0, this is the 
real, wth root of | a» | if » is odd and the positive, real, nth. root of this num­
ber if n is even and an is negative, the rapidity of the convergence of the 
defining sequences depending upon our choice of k, 
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equation for one root we are then able to find 2 roots* of the 
(/—l)th resolvent and 2l roots of the original equation. The 
procedure for finding the m remaining roots is obvious. 

It is a fairly simple matter to write out formulas, by this 
method, for the roots of equations of lower degree than the 
sixth, but for higher degree equations the work becomes ex­
tremely complicated. 

UNIVERSITY OF CALIFORNIA, SOUTHERN BRANCH 

T H E CONDITIONS FOR A FIXED POINT IN 
PROJECTIVE DIFFERENTIAL GEOMETRY 

BY A. L. NELSON 

1. Introduction. In the projective differential geometry of 
Wilczynski, as applied to various special theories, a local 
frame of reference is found to be useful. When theorems! which 
involve fixed points are proved by Wilczynski's methods, the 
conditions satisfied by the coordinates of such points, referred 
to such local frames, are naturally of importance. It is a con­
spicuous fact that these conditions invariably involve the 
adjoint systemj of differential equations. This fact the 
present paper undertakes to explain. 

* This requires the solution of odd degree equations only. See On the 
solution of algebraic equations with rational coefficients, AMERICAN M A T H E ­
MATICAL MONTHLY, June, 1924, p. 286. 

f See A. F . Carpenter, Some fundamental relations in the projective differ­
ential geometry of ruled surfaces, ANNALI DI MATEMATICA, (3), vol. 26 (1917), 
pp. 285 et seq. Also A. L. Nelson, Plane nets with equal invariants, R E N -
DICONTI DI PALERMO, vol. 41 (1916), pp. 251 et seq. 

X More precisely, geometric adjoint system, in the language of Green (cf. 
Memoir on the general theory of surfaces and rectilinear congruences, T R A N S ­
ACTIONS OF THIS SOCIETY, vol. 20 (1919), p . 106). This will bè further dis­
cussed in §2. 

The term "system of differential equations" will be understood in this 
paper to mean "completely integrable system of partial differential equa­
tions," and to include the system of one or more ordinary differential 
equations as a special case. 


