NOTE ON A THEOREM OF KEMPNER CONCERN-ING TRANSCENDENTAL NUMBERS*

BY HENRY BLUMBERG

The theorem in question is the following one:†

Let a be an integer greater than 1, p/q a rational fraction, $p \ge 0$, q > 0; $\alpha_n(n = 0, 1, 2, \cdots)$, any positive or negative integer smaller in absolute value than a fixed arbitrary number M, but only a finite number of the α_n equal to 0; then

$$\sum_{n=0}^{\infty} \frac{\alpha_n}{a^{2^n}} \left(\frac{p}{q}\right)^n$$

is a transcendental number.

Professor Kempner states: "The condition that only a finite number of coefficients shall be zero · · · I have not been able to remove."

Now although the proof of the theorem appears essentially to depend not merely on the *croissance* of the denominators a^{2^n} but also on the particular character of the exponent 2^n of a, so that considerations based on the representation of numbers in the binary scale may be used, it nevertheless seems plausible that the restriction that only a finite number of coefficients shall be zero is dispensable. And, indeed, it is the purpose of this note to prove the theorem without this restriction; in other words, to prove the following theorem.

THEOREM. The properly! infinite series

$$f(x) = \sum_{n=0}^{\infty} \frac{\alpha_n}{a^{2^n}} x^n ,$$

where a is an integer greater than 1, and α_n an integer less in absolute value than a fixed number M, is transcendental for rational $x(\neq 0)$.

^{*} Presented to the Society, April 22, 1916.

[†] Transactions of this Society, vol. 17 (1916), p. 477.

[‡] That is, the terms are not all zero after a certain point.

PROOF. Let x = p/q, where $p(\neq 0)$ and q(>0) are integers. Suppressing the terms of f(x) in which $\alpha_n = 0$ we may write

$$f\left(\frac{p}{q}\right) = \sum_{n=1}^{\infty} \frac{\alpha_{\sigma_n}}{\alpha^{2\sigma_n}} \frac{p^{\sigma_n}}{q^{\sigma_n}} ,$$

where $\alpha_{\sigma n} \neq 0$ and $\sigma_n > \sigma_{n-1}(n=1, 2, \cdots)$. To prove that f(p/q) is transcendental, we shall show that every polynomial

$$\phi(y) = A_0 y^k + A_1 y^{k-1} + \cdots + A_{k-1} y + A_k$$

where $k \ge 1$, $A_i(i=0, 1, \dots, k)$ is an integer, and $A_0 \ne 0$, is different from 0 for y = f(p/q). We distinguish the two possibilities: (a) for every n there are 2 consecutive σ_n 's greater than n and differing by more than k; (b) after a certain point, the difference between 2 consecutive σ_n 's is less than or equal to k.

Case (a). Let n be such that $\sigma_n > \sigma_{n-1} + k$. We suppose that the individual terms of the expansion of $\phi(f(p/q))$ are retained without cancellation of common factors of numerators and denominators. Because of the rapid increase of the denominators absolute convergence is assured. Out of the various denominators of $\phi(f(p/q))$, we single out the following three:

$$\begin{split} d_1 &= a^{(k-1)2^{\sigma_{n-1}}} + 2^{\sigma_{n-2}} \ q^{(k-1)^{\sigma_{n-1}+\sigma_{n-2}}} \ , \\ d_2 &= \left(a^{2^{\sigma_{n-1}}} q^{\sigma_{n-1}}\right)^k \ , \\ d_3 &= a^{2^{\sigma_{n-1}}} q^{\sigma_n} \ . \end{split}$$

We have:

$$\begin{split} \frac{d_{3}}{d_{2}} &\geq \frac{a^{2^{n}(1-k/2^{\sigma_{n-\sigma_{n-1}}})}}{q^{k\sigma_{n-1}}} \\ &> \frac{a^{2^{\sigma_{n}}(1-k/2^{k})}}{q^{k\sigma_{n-1}}} \\ &\geq \frac{a^{2^{\sigma_{n-1}}}}{q^{k\sigma_{n-1}}} \end{split}$$

and

$$\frac{d_2}{d_1} > a^{2^{\sigma_{n-1}} - 2^{\sigma_{n-2}}} \ge a^{2^{\sigma_{n-1}} - 2^{\sigma_{n-1}}} = a^{2^{\sigma_{n-1}} - 1} .$$

From the expressions for d_1 , d_2 , and d_3 and their ratios, it appears that for n sufficiently large, d_1 , d_2 , and d_3 are consecutive if the denominators of $\phi(f(p/q))$ are arranged in ascending magnitude. The denominator d_2 occurs just once and with the numerator $n_2 = A_0 \alpha_{\sigma_{n-1}}^k p^{k\sigma_{n-1}} \neq 0$; and

$$\left| \frac{n_2}{d_2} \right| < \frac{A_0 M^k |p|^{k\sigma_{n-1}}}{d_1 a^{2\sigma_{n-1}-1}}.$$

Hence

$$\frac{n_2}{d_2}=\frac{\epsilon_n}{d_1}\;,$$

where $\epsilon_n \rightarrow 0$ as $n \rightarrow \infty$.

We shall now obtain an upper estimate of the absolute value of the sum s of those terms of $\phi(f(p/q))$ whose denominators are $\geq d_3$. A typical term t of $\phi(f(p/q))$ has the form

$$A_{k+j} \frac{\alpha_{\sigma_{n_1}} \alpha_{\sigma_{n_1}} \cdot \cdot \cdot \alpha_{\sigma_{n_j}} p^{\sigma_{n_1} + \sigma_{n_2} + \cdots + \sigma_{n_j}}}{a^{2\sigma_{n_1} + 2\sigma_{n_2} + \cdots + 2\sigma_{n_j}} q^{\sigma_{n_1} + \sigma_{n_2} + \cdots + \sigma_{n_j}}};$$

a multinomial factor m does not appear because, instead of regarding mt as appearing once, we regard t as appearing m times.

The number w_n of terms of $\phi(f(p/q))$ coming from the first n terms of f(p/q) is $n^k + n^{k-1} + \cdots + n + 1$ —we are supposing that the terms are kept without combination as they arise initially in the expansion of $\phi(f(p/q))$, and we include terms that may possibly be zero because some $A_i = 0$; hence $w_n < n^{k+1}$. Hence surely the number of terms of $\phi(f(p/q))$ arising from the first n, but not from the first (n-1) terms of f(p/q) is less than n^{k+1} ; moreover, any one such term is in absolute value less than $c \mid p \mid {}^{k\sigma n}/a^{2\sigma n}$, where c represents the maximum absolute value of the numbers $A_{k-i}M^i$. Likewise, there are less than $(n+1)^{k+1}$ terms arising from the first (n+1) terms, but not from the first n terms of $\phi(f(p/q))$; and each of these terms is in absolute value less than $c \mid p \mid {}^{k\sigma n+1}/a^{2\sigma n+1}$. Therefore, since the terms of $\phi(f(p/q))$ with denominators $\geq d_3$ involve the nth term or later terms of f(p/q), we have

$$|s| < c \left[\frac{n^{k+1} |p|^{k\sigma_n}}{a^{2\sigma_n}} + \frac{(n+1)^{k+1} |p|^{k\sigma_{n+1}}}{a^{2\sigma_{n+1}}} + \cdots \right].$$

As may be seen through elementary considerations, the bracket is less than, say, double its first term, if n is sufficiently large. For sufficiently large n, we therefore have

$$|s| < \frac{2cn^{k+1} |p|^{k\sigma_n}}{a^{2^{\sigma_n}}} = \frac{2cn^{k+1} |p|^{k\sigma_n}q^{\sigma_n}}{d_3} < \frac{2cn^{k+1} |p|^{k\sigma_n}q^{\sigma_n+k\sigma_{n-1}}}{d_2a^{2^{\sigma_{n-1}}}}.$$

Since $n \le \sigma_n$, the relative magnitude of $a^{2\sigma_{n-1}}$ renders the coefficient of $1/d_2$ infinitesimal for $n \to \infty$, so that

$$s = \frac{\epsilon'_n}{d_2}$$
,

where $\epsilon'_n \rightarrow 0$ as $n \rightarrow \infty$.

We may now see why $\phi(f(p/q)) \neq 0$. For the sum of those terms of $\phi(f(p/q))$ whose denominators are $\leq d_1$ is either 0 or at least $1/d_1$ in absolute value. In the former case,

$$\phi(f(p/q)) = \frac{n_2}{d_2} + s = \frac{n_2 + \epsilon'_n}{d_2} \neq 0$$
,

since n_2 is integral and $\neq 0$. And in the latter case,

$$\left|\phi\big(f(p/q)\big)\right| \ge \frac{1}{d_1} - \frac{\left|\epsilon_n\right|}{d_1} - \frac{\left|\epsilon_n'\right|}{d_2} < \frac{1 - \left|\epsilon_n\right|}{d_1} - \frac{\left|\epsilon_n'\right|}{d_1 a^{2\sigma_{n-1}-1}} \ne 0,$$

for sufficiently large n, because ϵ_n , ϵ'_n , and $1/a^{2\sigma_{n-1}-1}$ approach 0 as $n \to \infty$.

Case (b). As in case (a), we set

$$d_3 = a^{2\sigma_n} q^{\sigma_n}$$
.

Let d_2 equal the largest denominator in $\phi(f(p/q))$ less than d_3 ; and d_1 , the largest denominator less than d_2 ; it is understood that denominators are not excluded because their corresponding numerators in the expansion of $\phi(f(p/q))$ happen to be zero on account of the vanishing of one or more of the A's. The denominator d_2 is of the form $d_2 = \prod_{\nu=1}^h 2^{\sigma_{j\nu}} q^{\sigma_{j\nu}}$ where $h \leq k$ and $\sigma_{j_{\nu}} < \sigma_n(\nu = 1, 2, \cdots, h)$. Moreover, $\sum_{\nu=1}^h 2^{\sigma_{j\nu}} < 2^{\sigma_n}$. For since $h \geq 2$, or else (for large n), as is particularly evident from the sequel, there are denominators between d_2 and d_3 , $\prod_{\nu=1}^h q^{\sigma_{j_{\nu}}} \geq q^{2\sigma_{n-k}} > q^{\sigma_n}$ for n sufficiently large, since (for large n)

 $\sigma_{n-k} \ge \sigma_n - k^2$. Consequently, if $\sum_{\nu=1}^h 2^{\sigma_{j_{\nu}}} \ge 2^{\sigma_n}$, it follows that $d_2 > d_3$. Since, then, $\sum_{\nu=1}^h 2^{\sigma_{j_{\nu}}} < 2^{\sigma_n}$, we may conclude, if, as we supposed, there are to be no denominators between d_2 and d_3 , that h=k and that $\sigma_{n-1} \ge \sigma_{j_{\nu}} \ge \sigma_{n-k} (\nu=1, 2, \cdots, k)$. (The inequality $\sum 2^{\sigma_{j_{\nu}}} < 2^{\sigma_{n}}$ guarantees, for n sufficiently large, that $\prod a^{2\sigma_{j_{\nu}}} q^{\sigma_{j_{\nu}}} < d_3$ even though $\prod q^{\sigma_{j_{\nu}}} > q^{\sigma_{n}}$, as appears more clearly from the subsequent inequalities for d_3/d_2 .) Hence we have, for large n,

$$\frac{d_3}{d_2} > \frac{a^{2\sigma_n}q^{\sigma_n}}{a^{2\sigma_{n-1}+2\sigma_{n-2}+\cdots+2^{\sigma_{n-k}}}q^{k\sigma_{n-1}}} > \frac{a^{2\sigma_{n-k}}}{q^{k\sigma_{n-1}}} \ .$$

From the definition of d_1 , it follows that d_1 , like d_2 , is of the form $\prod_{\nu=1}^k a^{2\sigma_{j_{\nu}}} q^{\sigma_{j_{\nu}}}$ and, indeed, the same quantities $a^{2\sigma_{j_{\nu}}} q^{\sigma_{j_{\nu}}}$ occur, except that for one of these factors, say $a^{2\sigma_{j_{\rho}}} q^{\sigma_{j_{\rho}}}$ of d_2 , in which $\sigma_{j_{\rho}} = \min \ \sigma_{\lambda\nu}$, is substituted the factor $a^{2\sigma_{j_{\rho-1}}} q^{\sigma_{j_{\rho-1}}}$. Therefore

$$\frac{d_2}{d_1} \ge \frac{a^{2^{\sigma_{n-k}}}q^{\sigma_{n-k}}}{a^{2^{\sigma_{n-k}-1}}q^{\sigma_{n-k}-1}} > a^{2^{\sigma_{n-k}-1}}.$$

The denominator d_2 is, except for the order of the factors $a^{2\sigma_{j_{\nu}}}q^{\sigma_{j_{\nu}}}$, obtainable in just one way; if, therefore, n_2/d_2 is the sum of the terms of $\phi(f(p/q))$ with denominator d_2 , we have $n_2 = A_0 \prod_{\nu=1}^k \alpha_{\sigma_{j_{\nu}}} p^{\sigma_{j_{\nu}}}$, where the $\sigma_{j_{\nu}}$ are the same as in d_2 , and g is a multinomial coefficient in the expansion of a kth power. Hence $n_2 \neq 0$. Furthermore

$$\left| \frac{n_2}{d_2} \right| < \frac{A_{0} g M^k \left| p \right|^{k \sigma_{n-1}}}{d_1 a^{2 \sigma_{n-k} - 1}} \leqq \frac{1}{d_1} \cdot \frac{A_{0} g M^k \left| p \right|^{k \sigma_{n-1}}}{a^{2 \sigma_{n-1} - k^2}}$$

for large n, since after a certain point, we have $\sigma_{\nu-1} \ge \sigma_{\nu} - k$. Consequently

$$\frac{n_2}{d_2}=\frac{\eta_n}{d_1}\;,$$

where $\eta_n \rightarrow 0$ as $n \rightarrow \infty$.

If, as in case (a), s represents the sum of the terms of $\phi(f(p/q))$ with denominators $\geq d_3$, we have, as before, not-

withstanding the fact that denominators $\geq d_3$ may now arise from the first (n-1) terms of f(p/q),

$$|s| < \frac{2cn^{k+1}|p|^{k\sigma_n}}{a^{2\sigma_n}},$$

for large n. Hence

$$\left|s\right| < \frac{2cn^{k+1} \left|p\right|^{k\sigma_n q^{\sigma_n}}}{d_3} < \frac{2cn^{k+1} \left|p\right|^{k\sigma_n q^{\sigma_n + k\sigma_{n-1}}}}{d_2 a^{2\sigma_n - k}}.$$

Therefore

$$s=\frac{\eta_n'}{d_2},$$

where $\eta_n^n \to 0$ as $n \to \infty$. From the fact that $n_2 \neq 0$, the equations $n_2/d_2 = \eta_n/d_1$ and $s = \eta_n'/d_2$, and the inequality for d_2/d_1 , we conclude, as in case (a), that $\phi(f(p/q)) \neq 0$.

As in the case of Professor Kempner's theorem, the exponent 2^n may be replaced by b^n , where b is an integer > 2. It is also obvious that α_n need not be limited, but it suffices, for instance, to subject it—for large n—to being $\leq Ml^n$, where M and l are positive constants, and l < 2.

THE OHIO STATE UNIVERSITY